-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlayer.py
113 lines (89 loc) · 3.55 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn as nn
class UNetDown(nn.Module):
def __init__(self, in_channels, out_channels, normalize=True, dropout=0.0):
"""
* UNet encoding 모듈 구조 정의
:param in_channels: in_channels 수
:param out_channels: out_channels 수
:param normalize: InstanceNorm2d 여부
:param dropout: dropout 비율
"""
super(UNetDown, self).__init__()
# Conv2d
layers = [nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=4, stride=2, padding=1, bias=False)]
# InstanceNorm2d
if normalize:
layers.append(nn.InstanceNorm2d(num_features=out_channels))
# LeakyReLU
layers.append(nn.LeakyReLU(negative_slope=0.2))
# Dropout
if dropout:
layers.append(nn.Dropout(p=dropout))
self.down = nn.Sequential(*layers)
def forward(self, x):
"""
* 순전파
:param x: 배치 개수 만큼의 입력. (N, in_channels, H, W)
:return: 배치 개수 만큼의 출력. (N, out_channels, H/2, W/2)
"""
# (N, in_channels, H, W) -> (N, out_channels, H/2, W/2)
x = self.down(x)
return x
class UNetUp(nn.Module):
def __init__(self, in_channels, out_channels, dropout=0.0):
"""
* UNet decoding 모듈 구조 정의
:param in_channels: in_channels 수
:param out_channels: out_channels 수
:param dropout: dropout 비율
"""
super(UNetUp, self).__init__()
# ConvTranspose2d, InstanceNorm2d, LeakyReLU
layers = [
nn.ConvTranspose2d(in_channels=in_channels, out_channels=out_channels, kernel_size=4, stride=2, padding=1, bias=False),
nn.InstanceNorm2d(num_features=out_channels),
nn.LeakyReLU(negative_slope=1e-2)
]
# Dropout
if dropout:
layers.append(nn.Dropout(p=dropout))
self.up = nn.Sequential(*layers)
def forward(self, x, skip):
"""
* 순전파
:param x: 배치 개수 만큼의 입력. (N, in_channels, H, W)
:param skip: 배치 개수 만큼의 skip 입력. (N, skip.shape[1], H*2, W*2)
:return: 배치 개수 만큼의 출력. (N, out_channels+skip.shape[1], H*2, W*2)
"""
# (N, in_channels, H, W) -> (N, out_channels, H*2, W*2)
x = self.up(x)
# (N, out_channels, H*2, W*2) -> (N, out_channels+skip.shape[1], H*2, W*2)
x = torch.cat(tensors=(x, skip), dim=1)
return x
class DisBlock(nn.Module):
def __init__(self, in_channels, out_channels, normalize=True):
"""
* DisBlock 모듈 구조 정의
:param in_channels: in_channels 수
:param out_channels: out_channels 수
:param normalize: InstanceNorm2d 여부
"""
super(DisBlock, self).__init__()
# Conv2d
layers = [nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=4, stride=2, padding=1, bias=True)]
# InstanceNorm2d
if normalize:
layers.append(nn.InstanceNorm2d(num_features=out_channels))
# LeakyReLU
layers.append(nn.LeakyReLU(negative_slope=0.2))
self.block = nn.Sequential(*layers)
def forward(self, x):
"""
* 순전파
:param x: 배치 개수 만큼의 입력. (N, in_channels, H, W)
:return: 배치 개수 만큼의 출력. (N, out_channels, H/2, W/2)
"""
# (N, in_channels, H, W) -> (N, out_channels, H/2, W/2)
x = self.block(x)
return x