Skip to content

fgfalll/WAG_optimisation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CO₂-EOR Optimization Framework

Python Version DOI PyPI Version Tests

PhD candidate: Petrenko Taras Sergiyovych
Advisor: Branimir Cvetcovich

This research develops novel computational methods for CO₂-EOR optimization, contributing:

  1. Hybrid MMP correlation framework with improved accuracy (RMSE < 150 psi)
  2. Physics-informed genetic algorithm with 20-30% faster convergence
  3. GPU-accelerated sweep efficiency modeling
  4. Field-validated uncertainty quantification

Key Publications:

  • Petrenko, T. (2025). Study of physicochemical and geochemical aspects of enhanced oil recovery and CO₂ storage in oil reservoirs. Technology Audit and Production Reserves, 2(1(82)), 24–29. https://doi.org/10.15587/2706-5448.2025.325343

Research Methodology

  1. Data Collection

    • TBD
  2. Model Development

    • Hybrid MMP correlation development
    • GPU-accelerated optimization
    • Uncertainty quantification framework
  3. Validation

    • Numerical simulation (ECLIPSE)
    • Field case studies
    • Sensitivity analysis

Key Features

  • Comprehensive MMP Calculation

    • Multiple empirical correlations (Cronquist, Glaso, Yuan)
    • Temperature and composition dependent
  • Advanced Data Processing

    • LAS file parsing with automatic unit conversion
    • ECLIPSE simulator data integration
    • Robust data validation
  • Physics-Informed Optimization

    • Hybrid genetic algorithm + Bayesian optimization
    • GPU-accelerated calculations
    • Koval sweep efficiency modeling
  • Visualization System

    • MMP depth profiles
    • Optimization convergence tracking
    • Parameter sensitivity analysis

Installation

From PyPI (recommended)

pip install co2eor-optimizer

From Source

# Clone repository
git clone https://github.com/fgfalll/WAG_optimisation.git
cd WAG_optimisation

# Create virtual environment
python -m venv venv
source venv/bin/activate  # Linux/MacOS
venv\Scripts\activate     # Windows

# Install with development dependencies
pip install -e ".[dev]"

Quick Start

  1. Import your reservoir data (LAS or ECLIPSE format)
  2. Calculate MMP for your reservoir conditions
  3. Run optimization to determine optimal injection parameters

Usage Example

from co2eor_optimizer import MMPCalculator, OptimizationEngine

# Calculate MMP using Yuan correlation
mmp = MMPCalculator().calculate_mmp(
    temperature=180,  # °F
    api_gravity=32,
    gas_composition={'CO2': 0.95, 'N2': 0.05}
)

# Optimize injection scheme
results = OptimizationEngine().optimize_recovery(
    reservoir_data='eclipse_data.DATA',
    constraints={'max_injection_pressure': 5000}  # psi
)

print(f"Optimal WAG ratio: {results.optimal_wag_ratio}")

Documentation

Comprehensive documentation is available in the Doc directory:

Contributing

We welcome contributions! Please see our:

Key areas for contribution:

  • Additional MMP correlations
  • Enhanced visualization features
  • Simulator integration improvements

Roadmap

  • Add support for CMG simulator data
  • Hybrid GH MMP correlation (completed in v1.2)
  • Advanced PVT integration (viscosity modeling, EOS support)
  • Enhanced GPU acceleration (multi-GPU support, memory optimization)
  • Implement machine learning-based MMP prediction
  • Develop UI (PyQT6)
  • Field data integration module (ECLIPSE results visualization)

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

For technical inquiries: engineering@saynos2011@gmail.com

Researcher: ORCID
@fgfalll

About

For my PHD

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published