PhD candidate: Petrenko Taras Sergiyovych
Advisor: Branimir Cvetcovich
This research develops novel computational methods for CO₂-EOR optimization, contributing:
- Hybrid MMP correlation framework with improved accuracy (RMSE < 150 psi)
- Physics-informed genetic algorithm with 20-30% faster convergence
- GPU-accelerated sweep efficiency modeling
- Field-validated uncertainty quantification
Key Publications:
- Petrenko, T. (2025). Study of physicochemical and geochemical aspects of enhanced oil recovery and CO₂ storage in oil reservoirs. Technology Audit and Production Reserves, 2(1(82)), 24–29. https://doi.org/10.15587/2706-5448.2025.325343
-
Data Collection
- TBD
-
Model Development
- Hybrid MMP correlation development
- GPU-accelerated optimization
- Uncertainty quantification framework
-
Validation
- Numerical simulation (ECLIPSE)
- Field case studies
- Sensitivity analysis
-
Comprehensive MMP Calculation
- Multiple empirical correlations (Cronquist, Glaso, Yuan)
- Temperature and composition dependent
-
Advanced Data Processing
- LAS file parsing with automatic unit conversion
- ECLIPSE simulator data integration
- Robust data validation
-
Physics-Informed Optimization
- Hybrid genetic algorithm + Bayesian optimization
- GPU-accelerated calculations
- Koval sweep efficiency modeling
-
Visualization System
- MMP depth profiles
- Optimization convergence tracking
- Parameter sensitivity analysis
pip install co2eor-optimizer
# Clone repository
git clone https://github.com/fgfalll/WAG_optimisation.git
cd WAG_optimisation
# Create virtual environment
python -m venv venv
source venv/bin/activate # Linux/MacOS
venv\Scripts\activate # Windows
# Install with development dependencies
pip install -e ".[dev]"
- Import your reservoir data (LAS or ECLIPSE format)
- Calculate MMP for your reservoir conditions
- Run optimization to determine optimal injection parameters
from co2eor_optimizer import MMPCalculator, OptimizationEngine
# Calculate MMP using Yuan correlation
mmp = MMPCalculator().calculate_mmp(
temperature=180, # °F
api_gravity=32,
gas_composition={'CO2': 0.95, 'N2': 0.05}
)
# Optimize injection scheme
results = OptimizationEngine().optimize_recovery(
reservoir_data='eclipse_data.DATA',
constraints={'max_injection_pressure': 5000} # psi
)
print(f"Optimal WAG ratio: {results.optimal_wag_ratio}")
Comprehensive documentation is available in the Doc directory:
- Architecture Overview - System design and components
- Development Timeline - Project milestones
- Code Audit Review - Quality assurance report
- Code Audit Review from 16.06 - Quality assurance report
- API Reference - Detailed module documentation
We welcome contributions! Please see our:
Key areas for contribution:
- Additional MMP correlations
- Enhanced visualization features
- Simulator integration improvements
- Add support for CMG simulator data
- Hybrid GH MMP correlation (completed in v1.2)
- Advanced PVT integration (viscosity modeling, EOS support)
- Enhanced GPU acceleration (multi-GPU support, memory optimization)
- Implement machine learning-based MMP prediction
- Develop UI (PyQT6)
- Field data integration module (ECLIPSE results visualization)
This project is licensed under the MIT License - see the LICENSE file for details.
For technical inquiries: engineering@saynos2011@gmail.com
Researcher:
@fgfalll