-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathAffineTransform.swift
362 lines (333 loc) · 12 KB
/
AffineTransform.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
// Note from the UIKit-Crossplatform authors:
// The `AffineTransform` type has been essentially copied verbatim from the
// swift-corelibs-foundation project (below). The main difference in this
// file compared to its equivalent in that project is that we don't include
// the "reference type" bridging and other dynamic features (or types) that
// the original includes.
//
/// AffineTransform represents an affine transformation matrix of the following form:
///
/// ```swift
/// [ m11 m12 0 ]
/// [ m21 m22 0 ]
/// [ tX tY 1 ]
/// ```
public struct AffineTransform {
public var m11: CGFloat
public var m12: CGFloat
public var m21: CGFloat
public var m22: CGFloat
public var tX: CGFloat
public var tY: CGFloat
/// Creates an affine transformation.
public init(
m11: CGFloat, m12: CGFloat,
m21: CGFloat, m22: CGFloat,
tX: CGFloat, tY: CGFloat
) {
self.m11 = m11
self.m12 = m12
self.m21 = m21
self.m22 = m22
self.tX = tX
self.tY = tY
}
}
extension AffineTransform {
/// Creates an affine transformation matrix with identity values.
public init() {
self.init(m11: 1, m12: 0,
m21: 0, m22: 1,
tX: 0, tY: 0)
}
/// An identity affine transformation matrix
///
/// ```swift
/// [ 1 0 0 ]
/// [ 0 1 0 ]
/// [ 0 0 1 ]
/// ```
public static let identity = AffineTransform()
}
extension AffineTransform {
/// Creates an affine transformation matrix from translation values.
/// The matrix takes the following form:
///
/// ```swift
/// [ 1 0 0 ]
/// [ 0 1 0 ]
/// [ x y 1 ]
/// ```
public init(translationByX x: CGFloat, byY y: CGFloat) {
self.init(m11: 1, m12: 0,
m21: 0, m22: 1,
tX: x, tY: y)
}
/// Creates an affine transformation matrix from scaling values.
/// The matrix takes the following form:
///
/// ```swift
/// [ x 0 0 ]
/// [ 0 y 0 ]
/// [ 0 0 1 ]
/// ```
public init(scaleByX x: CGFloat, byY y: CGFloat) {
self.init(m11: x, m12: 0,
m21: 0, m22: y,
tX: 0, tY: 0)
}
/// Creates an affine transformation matrix from scaling a single value.
/// The matrix takes the following form:
///
/// ```swift
/// [ f 0 0 ]
/// [ 0 f 0 ]
/// [ 0 0 1 ]
/// ```
public init(scale factor: CGFloat) {
self.init(scaleByX: factor, byY: factor)
}
/// Creates an affine transformation matrix from rotation value (angle in radians).
/// The matrix takes the following form:
///
/// ```swift
/// [ cos α sin α 0 ]
/// [ -sin α cos α 0 ]
/// [ 0 0 1 ]
/// ```
public init(rotationByRadians angle: CGFloat) {
let sinα = sin(angle)
let cosα = cos(angle)
self.init(
m11: cosα, m12: sinα,
m21: -sinα, m22: cosα,
tX: 0, tY: 0
)
}
/// Creates an affine transformation matrix from a rotation value (angle in degrees).
/// The matrix takes the following form:
///
/// ```swift
/// [ cos α sin α 0 ]
/// [ -sin α cos α 0 ]
/// [ 0 0 1 ]
/// ```
public init(rotationByDegrees angle: CGFloat) {
let α = angle * .pi / 180
self.init(rotationByRadians: α)
}
}
extension AffineTransform {
/// Creates an affine transformation matrix by combining the two matrices `A×B` and returns the result.
///
/// The resulting matrix takes the following form
///
/// ```swift
///
/// [ a1, b1, 0 ] [ a2, b2, 0 ]
/// A×B = [ c1, d1, 0 ] × [ c2, d2, 0 ]
/// [ x1, y1, 1 ] [ x2, y2, 1 ]
///
/// [ a1*a2+b1*c2+0*x2 a1*b2+b1*d2+0*y2 a1*0+b1*0+0*1 ]
/// A×B = [ c1*a2+d1*c2+0*x2 c1*b2+d1*d2+0*y2 c1*0+d1*0+0*1 ]
/// [ x1*a2+y1*c2+1*x2 x1*b2+y1*d2+1*y2 x1*0+y1*0+1*1 ]
///
/// [ a1*a2+b1*c2 a1*b2+b1*d2 0 ]
/// A×B = [ c1*a2+d1*c2 c1*b2+d1*d2 0 ]
/// [ x1*a2+y1*c2+x2 x1*b2+y1*d2+y2 1 ]
/// ```
@inline(__always)
internal func concatenated(_ other: AffineTransform) -> AffineTransform {
let (t, m) = (self, other)
return AffineTransform(
m11: (t.m11 * m.m11) + (t.m12 * m.m21), m12: (t.m11 * m.m12) + (t.m12 * m.m22),
m21: (t.m21 * m.m11) + (t.m22 * m.m21), m22: (t.m21 * m.m12) + (t.m22 * m.m22),
tX: (t.tX * m.m11) + (t.tY * m.m21) + m.tX,
tY: (t.tX * m.m12) + (t.tY * m.m22) + m.tY
)
}
/// Mutates an affine transformation by appending the specified matrix.
public mutating func append(_ transform: AffineTransform) {
self = concatenated(transform)
}
/// Mutates an affine transformation by prepending the specified matrix.
public mutating func prepend(_ transform: AffineTransform) {
self = transform.concatenated(self)
}
}
extension AffineTransform {
// Translating
public mutating func translate(x: CGFloat, y: CGFloat) {
self = concatenated(
AffineTransform(translationByX: x, byY: y)
)
}
/// Mutates an affine transformation matrix to perform a scaling in each of the x and y dimensions.
public mutating func scale(x: CGFloat, y: CGFloat) {
self = concatenated(
AffineTransform(scaleByX: x, byY: y)
)
}
/// Mutates an affine transformation matrix to perform the given scaling in both x and y dimensions.
public mutating func scale(_ scale: CGFloat) {
self.scale(x: scale, y: scale)
}
/// Mutates an affine transformation matrix from a rotation value (angle α in radians).
/// The matrix takes the following form:
///
/// ```swift
/// [ cos α sin α 0 ]
/// [ -sin α cos α 0 ]
/// [ 0 0 1 ]
/// ```
public mutating func rotate(byRadians angle: CGFloat) {
self = concatenated(
AffineTransform(rotationByRadians: angle)
)
}
/// Mutates an affine transformation matrix from a rotation value (angle α in degrees).
/// The matrix takes the following form:
///
/// ```swift
/// [ cos α sin α 0 ]
/// [ -sin α cos α 0 ]
/// [ 0 0 1 ]
/// ```
public mutating func rotate(byDegrees angle: CGFloat) {
self = concatenated(
AffineTransform(rotationByDegrees: angle)
)
}
}
extension AffineTransform {
/// Returns an inverted version of the matrix if possible, or nil if not.
public func inverted() -> AffineTransform? {
// We need the matrix of cofactors to calculate the inverse, but first we
// need to calculate the minors of each element — where the minor of an
// element Ai,j is the determinant of the matrix derived from deleting
// the ith row and jth column:
//
// [ |d y| |c x| |c x| ]
// [ |0 1| |0 1| |d y| ]
// [ ]
// [ |b y| |a x| |a x| ]
// M = [ |0 1| |0 1| |b y| ]
// [ ]
// [ |b d| |a c| |a c| ]
// [ |0 0| |0 0| |b d| ]
//
// [ d*1-y*0 c*1-x*0 c*y-x*d ]
// M = [ b*1-y*0 a*1-x*0 a*y-x*b ]
// [ b*0-d*0 a*0-c*0 a*d-c*b ]
//
// [ d c c*y-x*d ]
// M = [ b a a*y-x*b ]
// [ 0 0 |A| ]
//
// Now we can calculate the matrix of cofactors by negating each element Ai,j
// where i+j is odd:
//
// [ d -c c*y-x*d ]
// C = [ -b a -(a*y-x*b) ]
// [ 0 -0 |A| ]
//
// Next, we can find the adjugate matrix, which is the transposed matrix of
// cofactors — a matrix whose ith column is the ith row of the matrix of C:
//
// [ d -b 0 ]
// adj(A) = [ -c a -0 ]
// [ c*y-x*d -(a*y-x*b) |A| ]
//
// Finally, the inverse matrix is the product of the reciprocal of the determinant
// of A times adj(A), assuming that |A|≠0:
//
// A^-1 = (1 / |A|) × adj(A)
//
// [ d/|A| -b/|A| 0/|A| ]
// A^-1 = [ -c/|A| a/|A| -0/|A| ]
// [ (c*y-x*d)/|A| -(a*y-x*b)/|A| |A|/|A| ]
//
// [ d/|A| -b/|A| 0 ]
// A^-1 = [ -c/|A| a/|A| 0 ]
// [ (c*y-x*d)/|A| (x*b-a*y)/|A| 1 ]
let determinant = (m11 * m22) - (m12 * m21)
// We compare to ulp of 0 instead of doing determinant != 0,
// to catch floating-point rounding errors.
if abs(determinant) <= CGFloat.zero.ulp {
return nil
}
return AffineTransform(
m11: m22 / determinant, m12: -m12 / determinant,
m21: -m21 / determinant, m22: m11 / determinant,
tX: (m21 * tY - m22 * tX) / determinant, tY: (m12 * tX - m11 * tY) / determinant
)
}
/// Inverts the transformation matrix if possible. Matrices with a determinant that is less than
/// the smallest valid representation of a double value greater than zero are considered to be
/// invalid for representing as an inverse. If the input AffineTransform can potentially fall into
/// this case then the inverted() method is suggested to be used instead since that will return
/// an optional value that will be nil in the case that the matrix cannot be inverted.
///
/// ```swift
/// D = (m11 * m22) - (m12 * m21)
/// ```
///
/// - Note: `D < ε` the inverse is undefined and will be nil
public mutating func invert() {
guard let inverse = inverted() else {
fatalError("Transform has no inverse")
}
self = inverse
}
}
extension AffineTransform {
/// Applies the transform to the specified point and returns the result.
public func transform(_ point: CGPoint) -> CGPoint {
// Multiply the given point matrix with the matrix:
//
// [ m11 m12 0 ]
// [ x' y' 1 ] = [ x y 1 ] × [ m21 m22 0 ]
// [ tX tY 1 ]
//
// [ x' y' 1 ] = [ x*m11+y*m21+1*tX x*m12+y*m22+1*tY x*0+y*0+1*1 ]
//
// [ x' y' 1 ] = [ x*m11+y*m21+tX x*m12+y*m22+tY 1 ]
CGPoint(
x: (m11 * point.x) + (m21 * point.y) + tX,
y: (m12 * point.x) + (m22 * point.y) + tY
)
}
/// Applies the transform to the specified size and returns the result.
public func transform(_ size: CGSize) -> CGSize {
// Multiply the given size matrix with the scale & rotation matrix:
//
// [ w' h' ] = [ w h ] * [ m11 m12 ]
// [ m21 m22 ]
//
// [ w' h' ] = [ w*m11+h*m21 w*m12+h*m22 ]
CGSize(
width : (m11 * size.width) + (m21 * size.height),
height: (m12 * size.width) + (m22 * size.height)
)
}
}
extension AffineTransform: Hashable {}
extension AffineTransform: Codable {}
extension AffineTransform: CustomStringConvertible {
/// A textual description of the transform.
public var description: String {
return "{m11:\(m11), m12:\(m12), m21:\(m21), m22:\(m22), tX:\(tX), tY:\(tY)}"
}
/// A textual description of the transform suitable for debugging.
public var debugDescription: String {
return description
}
}