forked from matplotlib/matplotlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_bboximage.py
62 lines (47 loc) · 1.76 KB
/
demo_bboximage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.image import BboxImage
from matplotlib.transforms import Bbox, TransformedBbox
if __name__ == "__main__":
fig = plt.figure(1)
ax = plt.subplot(121)
txt = ax.text(0.5, 0.5, "test", size=30, ha="center", color="w")
kwargs = dict()
bbox_image = BboxImage(txt.get_window_extent,
norm = None,
origin=None,
clip_on=False,
**kwargs
)
a = np.arange(256).reshape(1,256)/256.
bbox_image.set_data(a)
ax.add_artist(bbox_image)
ax = plt.subplot(122)
a = np.linspace(0, 1, 256).reshape(1,-1)
a = np.vstack((a,a))
maps = sorted(m for m in plt.cm.datad if not m.endswith("_r"))
#nmaps = len(maps) + 1
#fig.subplots_adjust(top=0.99, bottom=0.01, left=0.2, right=0.99)
ncol = 2
nrow = len(maps)//ncol + 1
xpad_fraction = 0.3
dx = 1./(ncol + xpad_fraction*(ncol-1))
ypad_fraction = 0.3
dy = 1./(nrow + ypad_fraction*(nrow-1))
for i,m in enumerate(maps):
ix, iy = divmod(i, nrow)
#plt.figimage(a, 10, i*10, cmap=plt.get_cmap(m), origin='lower')
bbox0 = Bbox.from_bounds(ix*dx*(1+xpad_fraction),
1.-iy*dy*(1+ypad_fraction)-dy,
dx, dy)
bbox = TransformedBbox(bbox0, ax.transAxes)
bbox_image = BboxImage(bbox,
cmap = plt.get_cmap(m),
norm = None,
origin=None,
**kwargs
)
bbox_image.set_data(a)
ax.add_artist(bbox_image)
plt.draw()
plt.show()