forked from aigulkhkmv/rdkit-db
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcheck_time.py
167 lines (148 loc) · 5.51 KB
/
check_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import json
import sys
from pathlib import Path
from typing import Tuple
import click
import pandas as pd
from loguru import logger
sys.path.append("~rdkit-db")
from src.postgresql_db import SearchPony, SearchTimeCursor
def get_all_time_and_count(
db_name: str,
user_name: str,
test_mols_path: Path,
search_type: str,
limit: int,
port: int,
password=None,
) -> Tuple[dict, dict]:
"""
Searches by substructure and similarity for target molecules.
"""
logger.info("{} search with limit {}", search_type, limit)
if search_type == "pony":
chembl_db_time = SearchPony(db_name, user_name, port, password)
elif search_type == "postgres":
if password:
chembl_db_time = SearchTimeCursor(
port=port, dbname=db_name, user=user_name, password=password
)
else:
chembl_db_time = SearchTimeCursor(port=port, dbname=db_name, user=user_name)
with test_mols_path.open("r") as test_mols:
test_mols = json.load(test_mols)
logger.info("Read test mols")
mols_list = [i for i in test_mols.values()]
substructure_search, sorted_mfp_substructure = [], []
similarity_mfp2, sorted_similarity_mfp2 = [], []
substructure_search_count, sorted_mfp_substructure_count = [], []
similarity_mfp2_count, sorted_similarity_mfp2_count = [], []
for mol_smi in mols_list:
logger.info("Test molecule {}", mol_smi)
logger.info("Start substructure search for mol {}", mol_smi)
substructure_time, count_substructure = chembl_db_time.get_time_and_count(
mol_smi=mol_smi, search_type="substructure", limit=limit
)
substructure_search.append(substructure_time)
substructure_search_count.append(count_substructure)
logger.info("Time for substructure search {}", substructure_time)
logger.info("Start sorted substructure search for mol {}", mol_smi)
(
sorted_mfp_substructure_time,
count_sorted_mfp_substructure,
) = chembl_db_time.get_time_and_count(
mol_smi=mol_smi,
search_type="substructure",
sort_by_similarity=True,
fp_type="mfp2",
limit=limit,
)
sorted_mfp_substructure.append(sorted_mfp_substructure_time)
sorted_mfp_substructure_count.append(count_sorted_mfp_substructure)
logger.info("Time for sorted substructure search {}", sorted_mfp_substructure_time)
logger.info("Start similarity search for mol {}", mol_smi)
similarity_mfp2_time, count_similarity_mfp2 = chembl_db_time.get_time_and_count(
mol_smi=mol_smi,
search_type="similarity",
fp_type="mfp2",
limit=limit,
)
similarity_mfp2.append(similarity_mfp2_time)
similarity_mfp2_count.append(count_similarity_mfp2)
logger.info("Time for similarity search {}", similarity_mfp2_time)
logger.info("Start sorted similarity search for mol {}", mol_smi)
(
sorted_similarity_mfp2_time,
count_sorted_similarity_mfp2,
) = chembl_db_time.get_time_and_count(
mol_smi=mol_smi,
search_type="similarity",
fp_type="mfp2",
sort_by_similarity=True,
limit=limit,
)
sorted_similarity_mfp2.append(sorted_similarity_mfp2_time)
sorted_similarity_mfp2_count.append(count_sorted_similarity_mfp2)
logger.info("Time for sorted similarity search {}", sorted_similarity_mfp2_time)
time_res = {
"smiles": mols_list,
f"substructure {limit}": substructure_search,
f"sorted mfp substructure {limit}": sorted_mfp_substructure,
f"similarity mfp2 {limit}": similarity_mfp2,
f"sorted similarity mfp2 {limit}": sorted_similarity_mfp2,
}
count_res = {
"smiles": mols_list,
f"count substructure {limit}": substructure_search_count,
f"count sorted mfp substructure {limit}": sorted_mfp_substructure_count,
f"count similarity mfp2 {limit}": similarity_mfp2_count,
f"count sorted similarity mfp2 {limit}": sorted_similarity_mfp2_count,
}
return time_res, count_res
@click.command()
@click.argument("db_name")
@click.argument("user")
@click.argument("port")
@click.argument("test_mols_path", type=Path)
@click.argument("search_type")
@click.argument("path_to_save", type=Path)
@click.argument("password", required=False)
def get_time_with_limits(
db_name: str,
user: str,
port: int,
test_mols_path: Path,
search_type: str,
path_to_save: Path,
password=None,
) -> None:
"""
Searches the database for the specified molecules and saves the search time to a excel file.
"""
limits = [1, 10, 100, 1000, 21000000]
res_limits = []
res_counts = []
for limit in limits:
res_lim, res_count = get_all_time_and_count(
db_name, user, test_mols_path, search_type, limit, port, password
)
res_limits.append(res_lim)
res_counts.append(res_count)
logger.info(res_limits)
logger.info(res_counts)
final_dict = {
**res_limits[0],
**res_limits[1],
**res_limits[2],
**res_limits[3],
**res_limits[4],
**res_counts[0],
**res_counts[1],
**res_counts[2],
**res_counts[3],
**res_counts[4],
}
df = pd.DataFrame(final_dict)
df.to_excel(path_to_save.as_posix())
if __name__ == "__main__":
get_time_with_limits()