-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrsph.cc
334 lines (270 loc) · 10.4 KB
/
rsph.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
/***************************************************************************
rsph.cc - description
-------------------
begin : Thu Jul 26 2007
copyright : (C) 2005 by Knut-Helge Vik
email : knuthelv@ifi.uio.no
***************************************************************************/
#include "rsph.h"
#include "../simtime.h"
#include "../graphalgs/coreh.h"
#include <fstream>
using namespace std;
using namespace boost;
using namespace TreeAlgorithms;
/* -------------------------------------------------------------------------
Algorithm(): Shortest Path Heuristic start function
------------------------------------------------------------------------- */
void
RandomizedSPH::Algorithm(vertex_descriptorN zsource, const double &DB)
{
// -- init --
D = DB;
Initialize(zsource); // identify z-nodes and store them in VertexSet ZVertSet (and vector<MyWrapper> ZVert)
if(num_zvertices <= 0)
{
cout << "[RSPHAlgorithm] Error: No Z-vertices." << endl; exit(0);
}
cerr << "[RSPHAlgorithm] Start " << algo << " zsource " << zsource << " and " << num_zvertices << " znodes" << endl ;
//cerr << " input tree: " << inputT << endl;
for(VertexSet::iterator vit = inputT.V.begin(), vit_end = inputT.V.end(); vit != vit_end; ++vit)
depth[*vit] = 0;
// -- init end --
// -- Start SPH Algorithm --
T_sph.insertVertex(zsource, g); // add source to the SPH tree
ZVertSet.erase(zsource);
depth[zsource] = 0;
vertsWithinDB.insert(zsource);
if(ZVertSet.size() % 2 == 1) // is odd -> then add another vertex
{
VertexSet newV;
GraphAlgorithms::findBestLocatedMemberNodeConnectedToV(inputT, VertexSet(zsource), newV, 1);
vertex_descriptorN v = *(newV.begin());
if(inputT.isEdge(v,zsource))
{
ASSERTING(inputT.isEdge(v, zsource));
cerr << WRITE_FUNCTION << "odd, inserting " << v << endl;
T_sph.insertVertex(v, g[v]);
T_sph.insertEdge(v, zsource, g);
vertsWithinDB.insert(v);
depth[v] = 0;
ZVertSet.erase(v);
}
}
RunDijkstraForEveryZ(); // find SP for every z-node and store in SPKeeper
while(!ZVertSet.empty())
{
PathVector newPath; // .first contains path to new z-node to be added to T_sph
// .second is the tree-vertex link -> TODO: probably not needed
if(ExtractClosestZ(newPath)) // extract the z-node closest to T_sph
{
bool ret = AddTreeSPH(newPath); // add the new path to T_sph
if(false == ret) break; // tree is not valid
}
else
{
if(!TreeAlgorithms::relaxDiameter(D)) break;
//cerr << " increased diameter bound DB: " << D << endl;
VertexSet update = T_sph.V - vertsWithinDB;
for(VertexSet::iterator vit = update.begin(), vit_end = update.end(); vit != vit_end; ++vit)
{
vertex_descriptorN z = *vit;
if(depth[z] < D/2)
{
vertsWithinDB.insert(z);
//cerr << " update: inserting " << z << " to vertswithin DB : " << vertsWithinDB << " depth[z] " << depth[z] << endl;
}
}
char c = getchar();
}
}
// -- start debug --
//cerr << WRITE_FUNCTION << "Produced Steiner Tree: " << endl;
//T_sph.print();
//T_sph.printVertexState(cerr);
// -- end debug --
}
/* -------------------------------------------------------------------------
ExtractClosestZ(): Returns the vertex that is closest to the T_sph
src: Dijkstra_shortest_path from this node
p: next/parent pointers
distances: distances from src to each other node in the graph
IDEA: iterate through the z-vertices and check how close they are to
the T_sph return the closest z-vertex and add the path to the T_sph
--------------------------------------------------------------------------*/
bool
RandomizedSPH::ExtractClosestZ(PathVector &newPath)
{
double distToTree = MAXIMUM_WEIGHT;
int z_closest = -1, z_in = -1;
bool found = false;
//cerr << WRITE_FUNCTION << " verts witin db: " << vertsWithinDB << endl;
// iterate through the z-vertices and check how close they are to T_sph
for(VertexSet::iterator zit = ZVertSet.begin(), zit_end = ZVertSet.end(); zit != zit_end; ++zit)
{
vertex_descriptorN zAddToTree = *zit;
ASSERTING(!T_sph.V.contains(zAddToTree));
//cerr << WRITE_FUNCTION << " Z : " << zAddToTree << endl;
ShortestPathKeeper &spk = findSPMaps(zAddToTree);
VertexSet::iterator tit_sph, tit_sph_end;
for(tit_sph = vertsWithinDB.begin(), tit_sph_end = vertsWithinDB.end(); tit_sph != tit_sph_end; ++tit_sph) // check distance between new znode zit to every tree node tit_sph
{
vertex_descriptorN zInTree = *tit_sph;
double new_dist = spk.zdistance[zInTree];
if(distToTree > new_dist) // is the new z-node closer than the previous -> then update distance etc.
{
PathVector tempPath;
if(FindPath(tempPath, zInTree, zAddToTree, spk.zparent, algo))
{
distToTree = new_dist; // update shortest distance
z_closest = zAddToTree;
z_in = zInTree;
newPath = tempPath;
found = true;
}
}
}
if(found) break;
}
if(distToTree < MAXIMUM_WEIGHT && algo == BOUNDED_DIAMETER_RGH_SHORTEST_PATH_HEURISTIC)
{
ShortestPathKeeper &spk = findSPMaps(z_closest);
//cerr << "z_closest " << z_closest << " z_in " << z_in << " spk id " << spk.zid << endl;
FindPath(newPath, z_in, z_closest, spk.zparent);
newPath.second = z_in;
}
return found;
}
/* -------------------------------------------------------------------------
FindDistance(): Find distance from z_vert to tree_vert using zparent
and zdistance from DijkstraSP(z_vert)
------------------------------------------------------------------------- */
bool
RandomizedSPH::FindPath(PathVector &newPath, vertex_descriptorN tree_vert, vertex_descriptorN z_vert, const ParentVector &zparent, TreeAlgo algo)
{
ASSERTING(tree_vert != z_vert);
bool ret = true;
if(algo == BOUNDED_DIAMETER_RH_SHORTEST_PATH_HEURISTIC)
{
ret = FindPathRH(newPath, tree_vert, z_vert, zparent);
}
else if(algo == BOUNDED_DIAMETER_RGH_SHORTEST_PATH_HEURISTIC)
{
ret = true; //ret = FindPathRGH(newPath, tree_vert, z_vert, zparent);
}
return ret;
}
void
RandomizedSPH::FindPath(PathVector &newPath, vertex_descriptorN tree_vert, vertex_descriptorN z_vert, const ParentVector &zparent)
{
ASSERTING(tree_vert != z_vert);
vertex_descriptorN traverse_vert = tree_vert;
do{
newPath.first.push_back(traverse_vert);
traverse_vert = zparent[traverse_vert];
}while(traverse_vert != z_vert);
newPath.first.push_back(traverse_vert); // add last node
ASSERTING(newPath.first.size() > 1);
}
bool
RandomizedSPH::FindPathRH(PathVector &newPath, vertex_descriptorN tree_vert, vertex_descriptorN z_vert, const ParentVector &zparent)
{
double tree_depth = depth[tree_vert];
//cerr << WRITE_FUNCTION << " tree_depth " << tree_depth << endl;
vertex_descriptorN traverse_vert = tree_vert;
do{
pair<edge_descriptorN, bool> ep = edge(traverse_vert, zparent[traverse_vert], g);
ASSERTING(ep.second);
//cerr << ep.first << " tree_depth[" << traverse_vert << "] = " << tree_depth << " + " << g[ep.first].weight << endl;
if(ZVertSet.contains(traverse_vert) && tree_depth > D/2)
{
//cerr << traverse_vert << " diameter broken " << tree_depth << " > " << D/2 << endl;
return false;
}
tree_depth = tree_depth + g[ep.first].weight;
newPath.first.push_back(traverse_vert);
traverse_vert = zparent[traverse_vert];
}while(traverse_vert != z_vert);
newPath.first.push_back(traverse_vert); // add last node
ASSERTING(newPath.first.size() > 1);
return true;
}
bool
RandomizedSPH::FindPathRGH(PathVector &newPath, vertex_descriptorN tree_vert, vertex_descriptorN z_vert, const ParentVector &zparent)
{
double tree_depth = depth[tree_vert];
//cerr << WRITE_FUNCTION << " tree_depth " << tree_depth << endl;
vertex_descriptorN traverse_vert = tree_vert;
do{
pair<edge_descriptorN, bool> ep = edge(traverse_vert, zparent[traverse_vert], g);
ASSERTING(ep.second);
//cerr << ep.first << " tree_depth[" << traverse_vert << "] = " << tree_depth << " + " << g[ep.first].weight << endl;
//cerr << ep.first << " depth[" << traverse_vert << "] = " << depth[traverse_vert] << " + " << g[ep.first].weight << endl;
bool intact = true;
if(ZVertSet.contains(traverse_vert) && tree_depth > D/2)
{
//cerr << traverse_vert << " not in tree yet and diameter broken " << tree_depth << " > " << D/2 << endl;
intact = false;
}
if(depth[traverse_vert] > D/2)
{
//cerr << traverse_vert << " diameter broken " << depth[traverse_vert] << " > " << D/2 << endl;
intact = false;
}
if(!intact)
{
//char c = getchar();
return intact;
}
tree_depth = tree_depth + g[ep.first].weight;
newPath.first.push_back(traverse_vert);
traverse_vert = zparent[traverse_vert];
}while(traverse_vert != z_vert);
newPath.first.push_back(traverse_vert); // add last node
ASSERTING(newPath.first.size() > 1);
return true;
}
/* -------------------------------------------------------------------------
AddSPHTree(): Returns the vertex that is closest to the source
if it is not already in the SPH-tree.
all_vertex_info.first: path (vertex_descriptors) to new z_node
all_vertex_info.second: node in the T_sph (steiner or z-node) that
links the new z-node to T_sph
--------------------------------------------------------------------------*/
bool
RandomizedSPH::AddTreeSPH(PathVector &newPath)
{
ASSERTING(newPath.first.size() > 1);
for(ParentVector::iterator vit = newPath.first.begin(), vit_end = newPath.first.end(); vit != vit_end;)
{
// iterate
vertex_descriptorN u = *vit;
vit++;
if(vit == vit_end) break;
vertex_descriptorN v = *vit;
pair<edge_descriptorN, bool> ep = edge(u, v, g);
ASSERTING(ep.second);
//cerr << "depth " << v << " = " << depth[u] << " + " << g[ep.first].weight << endl;
depth[v] = depth[u] + g[ep.first].weight;
}
bool done = false;
for(ParentVector::reverse_iterator vit = newPath.first.rbegin(), vit_end = newPath.first.rend(); vit != vit_end; )
{
// iterate
vertex_descriptorN u = *vit;
vit++;
if(vit == vit_end) break;
vertex_descriptorN v = *vit;
//cerr << "adding (" << u << "," << v << ")" << endl;
if(T_sph.V.contains(v)) done = true;
T_sph.insertEdge(u, v, g);
ZVertSet.erase(u);
ZVertSet.erase(v);
if(depth[v] <= D/2) vertsWithinDB.insert(v);
if(depth[u] <= D/2) vertsWithinDB.insert(u);
if(depth[v] > D/2 && GlobalSimArgs::getRelaxDiameter() == 0) return false;
if(depth[u] > D/2 && GlobalSimArgs::getRelaxDiameter() == 0) return false;
if(done) break;
}
return true;
}