Skip to content

Commit f308deb

Browse files
style: format code with autopep8
Format code with autopep8 This commit fixes the style issues introduced in dcf9821 according to the output from Autopep8. Details: https://app.deepsource.com/gh/avinashkranjan/Amazing-Python-Scripts/transform/5d389ae7-399c-4367-8872-63d7f8b60b9a/
1 parent 0a04746 commit f308deb

File tree

1 file changed

+43
-41
lines changed

1 file changed

+43
-41
lines changed

AirObjects/air.py

Lines changed: 43 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -5,13 +5,13 @@
55
# cap = cv2.VideoCapture('NASA_video1.mp4') # video with airplane.
66

77
# patch_size = 15 # Size of image patch to extract around featuns points
8-
patch_size = 25 # Size of image patch to extract around feature points
8+
patch_size = 25 # Size of image patch to extract around feature points
99

1010

11-
count = 0 # Loop counter to control frequency of object recognition
12-
objfreq = 5 # Frequence of object recognition
11+
count = 0 # Loop counter to control frequency of object recognition
12+
objfreq = 5 # Frequence of object recognition
1313
# NumCorners = 50 # Number of corners to extract in a given frame
14-
NumCorners = 10 # Number of corners to extract in a given frame
14+
NumCorners = 10 # Number of corners to extract in a given frame
1515
'''
1616
# fourcc = cv2.cv.CV_FOURCC(*'XVID')
1717
# out = cv2.VideoWriter('result.avi', fourcc, 20.0, (450,170))
@@ -32,31 +32,30 @@
3232
if 1:
3333
if 1:
3434
# Convert to gray scale
35-
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
35+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
3636

3737
# Find corners in gray scale image
38-
corners = cv2.goodFeaturesToTrack(gray,NumCorners,0.01,100)
39-
print 'The corners are:',corners
38+
corners = cv2.goodFeaturesToTrack(gray, NumCorners, 0.01, 100)
39+
print 'The corners are:', corners
4040
corners = np.int0(corners)
4141

4242
# For each corner found, extract a patch and classify patch
43-
for j,i in enumerate(corners):
44-
x,y = i.ravel()
45-
#cv2.circle(frame,(x,y),3,255,-1)
43+
for j, i in enumerate(corners):
44+
x, y = i.ravel()
45+
# cv2.circle(frame,(x,y),3,255,-1)
4646
print 'The x pos of the corner is: ', x
4747
print 'The y pos of the corner is: ', y
4848
print 'The i of the corners is: ', i
4949
print 'The j of the corners is: ', j
5050
# Define size of patch in image coordinates
5151
xstart = x - patch_size
52-
xend = x + patch_size
52+
xend = x + patch_size
5353
ystart = y - patch_size
54-
yend = y + patch_size
55-
54+
yend = y + patch_size
5655

5756
# clip image patch based on image size
58-
xlen = frame.shape[1]
59-
ylen = frame.shape[0]
57+
xlen = frame.shape[1]
58+
ylen = frame.shape[0]
6059

6160
if xend > xlen:
6261
xend = xlen
@@ -67,48 +66,50 @@
6766
yend = ylen
6867
if ystart < 0:
6968
ystart = 0
70-
71-
cv2.rectangle(frame,(xstart,ystart),(xend,yend),(255,0,0),2)
72-
# Extract the image patch from each frame in the video
73-
img_patch = frame[ystart:yend,xstart:xend]
7469

70+
cv2.rectangle(frame, (xstart, ystart),
71+
(xend, yend), (255, 0, 0), 2)
72+
# Extract the image patch from each frame in the video
73+
img_patch = frame[ystart:yend, xstart:xend]
7574

7675
# Transform image to use caffe library
7776
transformed_image = transformer.preprocess('data', img_patch)
78-
77+
7978
# copy the image data into the memory allocated for the net
80-
net.blobs['data'].data[j,:,:,:] = transformed_image
81-
82-
### perform classification
79+
net.blobs['data'].data[j, :, :, :] = transformed_image
80+
81+
# perform classification
8382
output = net.forward()
84-
83+
8584
# Go through image patch for each corner and find if there are any airplanes
8685
Position = []
87-
for i,j in enumerate(corners):
88-
x,y = j.ravel()
89-
output_prob = output['prob'][i]
90-
86+
for i, j in enumerate(corners):
87+
x, y = j.ravel()
88+
output_prob = output['prob'][i]
89+
9190
# sort top five predictions from softmax output
9291
# top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items
93-
top_inds = output_prob.argsort()[::-1][:10] # reverse sort and take five largest items
94-
print 'The classes are:', top_inds
92+
# reverse sort and take five largest items
93+
top_inds = output_prob.argsort()[::-1][:10]
94+
print 'The classes are:', top_inds
9595
# print 'predicted class is:', output_prob.argmax()
96-
# print 'output label:', labels[output_prob.argmax()]
96+
# print 'output label:', labels[output_prob.argmax()]
9797
# print 'prob', output_prob[top_inds[0]]
9898

9999
# If airlane, record position to draw bounding box
100100

101-
AirplaneLabels = [895,404,405,812] # Airplane label ids in caffe database
102-
#437,566,556,570,706,735,752,818,830,848
103-
#VehicleLabels = [867,717,675,757,569,734,751,817,864,656] # Car, truck, van label ids in caffe database
101+
# Airplane label ids in caffe database
102+
AirplaneLabels = [895, 404, 405, 812]
103+
# 437,566,556,570,706,735,752,818,830,848
104+
# VehicleLabels = [867,717,675,757,569,734,751,817,864,656] # Car, truck, van label ids in caffe database
104105
# for k in range (0,5):
105-
for k in range (0,10):
106-
if (top_inds[k] in AirplaneLabels ):
106+
for k in range(0, 10):
107+
if (top_inds[k] in AirplaneLabels):
107108
if output_prob[top_inds[0]] > 0.0:
108109
print 'Shown class is:', top_inds[k]
109-
print 'output label:', labels[top_inds[k]]
110+
print 'output label:', labels[top_inds[k]]
110111
print 'prob', output_prob[top_inds[k]]
111-
Position.append((x,y))
112+
Position.append((x, y))
112113
# carNum = carNum + 1
113114
# break
114115
# Draw rectangles around each airplane
@@ -117,10 +118,11 @@
117118
for pos in Position:
118119
xpos = pos[0]
119120
ypos = pos[1]
120-
cv2.rectangle(frame,(xpos-patch_size,ypos-patch_size),(xpos+patch_size,ypos+patch_size),(0,255,0),2)
121+
cv2.rectangle(frame, (xpos-patch_size, ypos-patch_size),
122+
(xpos+patch_size, ypos+patch_size), (0, 255, 0), 2)
121123
# break
122124
# out.write(frame)
123-
cv2.imshow('frame',frame)
125+
cv2.imshow('frame', frame)
124126
cv2.waitKey()
125127
# Show image frame on screen
126128
count = count + 1
@@ -133,6 +135,6 @@
133135
if count > cap.get(7)/2:
134136
break
135137
'''
136-
#out.release()
138+
# out.release()
137139
cap.release()
138140
cv2.destroyAllWindows()

0 commit comments

Comments
 (0)