|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "#import libabry\n", |
| 10 | + "import pandas as pd\n", |
| 11 | + "from sklearn.model_selection import train_test_split\n", |
| 12 | + "from sklearn.ensemble import RandomForestClassifier\n", |
| 13 | + "from sklearn import metrics" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 2, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "#import dataset\n", |
| 23 | + "Diabetes = pd.read_csv('~/Downloads/Data Science/data set/Diabetes.csv') " |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "code", |
| 28 | + "execution_count": 3, |
| 29 | + "metadata": {}, |
| 30 | + "outputs": [ |
| 31 | + { |
| 32 | + "data": { |
| 33 | + "text/html": [ |
| 34 | + "<div>\n", |
| 35 | + "<style scoped>\n", |
| 36 | + " .dataframe tbody tr th:only-of-type {\n", |
| 37 | + " vertical-align: middle;\n", |
| 38 | + " }\n", |
| 39 | + "\n", |
| 40 | + " .dataframe tbody tr th {\n", |
| 41 | + " vertical-align: top;\n", |
| 42 | + " }\n", |
| 43 | + "\n", |
| 44 | + " .dataframe thead th {\n", |
| 45 | + " text-align: right;\n", |
| 46 | + " }\n", |
| 47 | + "</style>\n", |
| 48 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 49 | + " <thead>\n", |
| 50 | + " <tr style=\"text-align: right;\">\n", |
| 51 | + " <th></th>\n", |
| 52 | + " <th>Pregnancies</th>\n", |
| 53 | + " <th>Glucose</th>\n", |
| 54 | + " <th>BloodPressure</th>\n", |
| 55 | + " <th>SkinThickness</th>\n", |
| 56 | + " <th>Insulin</th>\n", |
| 57 | + " <th>BMI</th>\n", |
| 58 | + " <th>DiabetesPedigreeFunction</th>\n", |
| 59 | + " <th>Age</th>\n", |
| 60 | + " <th>Outcome</th>\n", |
| 61 | + " </tr>\n", |
| 62 | + " </thead>\n", |
| 63 | + " <tbody>\n", |
| 64 | + " <tr>\n", |
| 65 | + " <th>0</th>\n", |
| 66 | + " <td>6</td>\n", |
| 67 | + " <td>148</td>\n", |
| 68 | + " <td>72</td>\n", |
| 69 | + " <td>35</td>\n", |
| 70 | + " <td>0</td>\n", |
| 71 | + " <td>33.6</td>\n", |
| 72 | + " <td>0.627</td>\n", |
| 73 | + " <td>50</td>\n", |
| 74 | + " <td>1</td>\n", |
| 75 | + " </tr>\n", |
| 76 | + " <tr>\n", |
| 77 | + " <th>1</th>\n", |
| 78 | + " <td>1</td>\n", |
| 79 | + " <td>85</td>\n", |
| 80 | + " <td>66</td>\n", |
| 81 | + " <td>29</td>\n", |
| 82 | + " <td>0</td>\n", |
| 83 | + " <td>26.6</td>\n", |
| 84 | + " <td>0.351</td>\n", |
| 85 | + " <td>31</td>\n", |
| 86 | + " <td>0</td>\n", |
| 87 | + " </tr>\n", |
| 88 | + " <tr>\n", |
| 89 | + " <th>2</th>\n", |
| 90 | + " <td>8</td>\n", |
| 91 | + " <td>183</td>\n", |
| 92 | + " <td>64</td>\n", |
| 93 | + " <td>0</td>\n", |
| 94 | + " <td>0</td>\n", |
| 95 | + " <td>23.3</td>\n", |
| 96 | + " <td>0.672</td>\n", |
| 97 | + " <td>32</td>\n", |
| 98 | + " <td>1</td>\n", |
| 99 | + " </tr>\n", |
| 100 | + " <tr>\n", |
| 101 | + " <th>3</th>\n", |
| 102 | + " <td>1</td>\n", |
| 103 | + " <td>89</td>\n", |
| 104 | + " <td>66</td>\n", |
| 105 | + " <td>23</td>\n", |
| 106 | + " <td>94</td>\n", |
| 107 | + " <td>28.1</td>\n", |
| 108 | + " <td>0.167</td>\n", |
| 109 | + " <td>21</td>\n", |
| 110 | + " <td>0</td>\n", |
| 111 | + " </tr>\n", |
| 112 | + " <tr>\n", |
| 113 | + " <th>4</th>\n", |
| 114 | + " <td>0</td>\n", |
| 115 | + " <td>137</td>\n", |
| 116 | + " <td>40</td>\n", |
| 117 | + " <td>35</td>\n", |
| 118 | + " <td>168</td>\n", |
| 119 | + " <td>43.1</td>\n", |
| 120 | + " <td>2.288</td>\n", |
| 121 | + " <td>33</td>\n", |
| 122 | + " <td>1</td>\n", |
| 123 | + " </tr>\n", |
| 124 | + " <tr>\n", |
| 125 | + " <th>...</th>\n", |
| 126 | + " <td>...</td>\n", |
| 127 | + " <td>...</td>\n", |
| 128 | + " <td>...</td>\n", |
| 129 | + " <td>...</td>\n", |
| 130 | + " <td>...</td>\n", |
| 131 | + " <td>...</td>\n", |
| 132 | + " <td>...</td>\n", |
| 133 | + " <td>...</td>\n", |
| 134 | + " <td>...</td>\n", |
| 135 | + " </tr>\n", |
| 136 | + " <tr>\n", |
| 137 | + " <th>763</th>\n", |
| 138 | + " <td>10</td>\n", |
| 139 | + " <td>101</td>\n", |
| 140 | + " <td>76</td>\n", |
| 141 | + " <td>48</td>\n", |
| 142 | + " <td>180</td>\n", |
| 143 | + " <td>32.9</td>\n", |
| 144 | + " <td>0.171</td>\n", |
| 145 | + " <td>63</td>\n", |
| 146 | + " <td>0</td>\n", |
| 147 | + " </tr>\n", |
| 148 | + " <tr>\n", |
| 149 | + " <th>764</th>\n", |
| 150 | + " <td>2</td>\n", |
| 151 | + " <td>122</td>\n", |
| 152 | + " <td>70</td>\n", |
| 153 | + " <td>27</td>\n", |
| 154 | + " <td>0</td>\n", |
| 155 | + " <td>36.8</td>\n", |
| 156 | + " <td>0.340</td>\n", |
| 157 | + " <td>27</td>\n", |
| 158 | + " <td>0</td>\n", |
| 159 | + " </tr>\n", |
| 160 | + " <tr>\n", |
| 161 | + " <th>765</th>\n", |
| 162 | + " <td>5</td>\n", |
| 163 | + " <td>121</td>\n", |
| 164 | + " <td>72</td>\n", |
| 165 | + " <td>23</td>\n", |
| 166 | + " <td>112</td>\n", |
| 167 | + " <td>26.2</td>\n", |
| 168 | + " <td>0.245</td>\n", |
| 169 | + " <td>30</td>\n", |
| 170 | + " <td>0</td>\n", |
| 171 | + " </tr>\n", |
| 172 | + " <tr>\n", |
| 173 | + " <th>766</th>\n", |
| 174 | + " <td>1</td>\n", |
| 175 | + " <td>126</td>\n", |
| 176 | + " <td>60</td>\n", |
| 177 | + " <td>0</td>\n", |
| 178 | + " <td>0</td>\n", |
| 179 | + " <td>30.1</td>\n", |
| 180 | + " <td>0.349</td>\n", |
| 181 | + " <td>47</td>\n", |
| 182 | + " <td>1</td>\n", |
| 183 | + " </tr>\n", |
| 184 | + " <tr>\n", |
| 185 | + " <th>767</th>\n", |
| 186 | + " <td>1</td>\n", |
| 187 | + " <td>93</td>\n", |
| 188 | + " <td>70</td>\n", |
| 189 | + " <td>31</td>\n", |
| 190 | + " <td>0</td>\n", |
| 191 | + " <td>30.4</td>\n", |
| 192 | + " <td>0.315</td>\n", |
| 193 | + " <td>23</td>\n", |
| 194 | + " <td>0</td>\n", |
| 195 | + " </tr>\n", |
| 196 | + " </tbody>\n", |
| 197 | + "</table>\n", |
| 198 | + "<p>768 rows × 9 columns</p>\n", |
| 199 | + "</div>" |
| 200 | + ], |
| 201 | + "text/plain": [ |
| 202 | + " Pregnancies Glucose BloodPressure SkinThickness Insulin BMI \\\n", |
| 203 | + "0 6 148 72 35 0 33.6 \n", |
| 204 | + "1 1 85 66 29 0 26.6 \n", |
| 205 | + "2 8 183 64 0 0 23.3 \n", |
| 206 | + "3 1 89 66 23 94 28.1 \n", |
| 207 | + "4 0 137 40 35 168 43.1 \n", |
| 208 | + ".. ... ... ... ... ... ... \n", |
| 209 | + "763 10 101 76 48 180 32.9 \n", |
| 210 | + "764 2 122 70 27 0 36.8 \n", |
| 211 | + "765 5 121 72 23 112 26.2 \n", |
| 212 | + "766 1 126 60 0 0 30.1 \n", |
| 213 | + "767 1 93 70 31 0 30.4 \n", |
| 214 | + "\n", |
| 215 | + " DiabetesPedigreeFunction Age Outcome \n", |
| 216 | + "0 0.627 50 1 \n", |
| 217 | + "1 0.351 31 0 \n", |
| 218 | + "2 0.672 32 1 \n", |
| 219 | + "3 0.167 21 0 \n", |
| 220 | + "4 2.288 33 1 \n", |
| 221 | + ".. ... ... ... \n", |
| 222 | + "763 0.171 63 0 \n", |
| 223 | + "764 0.340 27 0 \n", |
| 224 | + "765 0.245 30 0 \n", |
| 225 | + "766 0.349 47 1 \n", |
| 226 | + "767 0.315 23 0 \n", |
| 227 | + "\n", |
| 228 | + "[768 rows x 9 columns]" |
| 229 | + ] |
| 230 | + }, |
| 231 | + "execution_count": 3, |
| 232 | + "metadata": {}, |
| 233 | + "output_type": "execute_result" |
| 234 | + } |
| 235 | + ], |
| 236 | + "source": [ |
| 237 | + "Diabetes" |
| 238 | + ] |
| 239 | + }, |
| 240 | + { |
| 241 | + "cell_type": "code", |
| 242 | + "execution_count": 4, |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "colnames = list(Diabetes.columns)\n", |
| 247 | + "predictors = colnames[:8]\n", |
| 248 | + "target = colnames[8]" |
| 249 | + ] |
| 250 | + }, |
| 251 | + { |
| 252 | + "cell_type": "code", |
| 253 | + "execution_count": 5, |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
| 256 | + "source": [ |
| 257 | + "# Split dataset\n", |
| 258 | + "X_train, X_test, y_train, y_test = train_test_split(Diabetes[predictors],Diabetes[target],test_size=0.3, random_state=0)" |
| 259 | + ] |
| 260 | + }, |
| 261 | + { |
| 262 | + "cell_type": "code", |
| 263 | + "execution_count": 6, |
| 264 | + "metadata": {}, |
| 265 | + "outputs": [], |
| 266 | + "source": [ |
| 267 | + "#Create a Gaussian Classifier\n", |
| 268 | + "clf=RandomForestClassifier(n_estimators=100)\n", |
| 269 | + "\n", |
| 270 | + "#Train the model using the training\n", |
| 271 | + "clf.fit(X_train,y_train)\n", |
| 272 | + "\n", |
| 273 | + "y_pred=clf.predict(X_test)" |
| 274 | + ] |
| 275 | + }, |
| 276 | + { |
| 277 | + "cell_type": "code", |
| 278 | + "execution_count": 7, |
| 279 | + "metadata": {}, |
| 280 | + "outputs": [ |
| 281 | + { |
| 282 | + "name": "stdout", |
| 283 | + "output_type": "stream", |
| 284 | + "text": [ |
| 285 | + "Accuracy: 0.7575757575757576\n" |
| 286 | + ] |
| 287 | + } |
| 288 | + ], |
| 289 | + "source": [ |
| 290 | + "# Model Accuracy\n", |
| 291 | + "print(\"Accuracy:\",metrics.accuracy_score(y_test, y_pred))" |
| 292 | + ] |
| 293 | + } |
| 294 | + ], |
| 295 | + "metadata": { |
| 296 | + "kernelspec": { |
| 297 | + "display_name": "Python 3", |
| 298 | + "language": "python", |
| 299 | + "name": "python3" |
| 300 | + }, |
| 301 | + "language_info": { |
| 302 | + "codemirror_mode": { |
| 303 | + "name": "ipython", |
| 304 | + "version": 3 |
| 305 | + }, |
| 306 | + "file_extension": ".py", |
| 307 | + "mimetype": "text/x-python", |
| 308 | + "name": "python", |
| 309 | + "nbconvert_exporter": "python", |
| 310 | + "pygments_lexer": "ipython3", |
| 311 | + "version": "3.6.8" |
| 312 | + } |
| 313 | + }, |
| 314 | + "nbformat": 4, |
| 315 | + "nbformat_minor": 4 |
| 316 | +} |
0 commit comments