@@ -5653,6 +5653,14 @@ def twiny(self):
5653
5653
ax2 .xaxis .set_label_position ('top' )
5654
5654
self .xaxis .tick_bottom ()
5655
5655
return ax2
5656
+
5657
+ def get_shared_x_axes (self ):
5658
+ 'Return a copy of the shared axes Grouper object for x axes'
5659
+ return self ._shared_x_axes
5660
+
5661
+ def get_shared_y_axes (self ):
5662
+ 'Return a copy of the shared axes Grouper object for y axes'
5663
+ return self ._shared_y_axes
5656
5664
5657
5665
#### Data analysis
5658
5666
@@ -5662,8 +5670,8 @@ def hist(self, x, bins=10, range=None, normed=False, cumulative=False,
5662
5670
"""
5663
5671
call signature::
5664
5672
5665
- hist(x, bins=10, normed=False, cumulative=False,
5666
- bottom=None, histtype='bar', align='edge ',
5673
+ hist(x, bins=10, range=None, normed=False, cumulative=False,
5674
+ bottom=None, histtype='bar', align='mid ',
5667
5675
orientation='vertical', rwidth=None, log=False, **kwargs)
5668
5676
5669
5677
Compute the histogram of x. The return value is (n, bins, patches) or
@@ -5673,7 +5681,6 @@ def hist(self, x, bins=10, range=None, normed=False, cumulative=False,
5673
5681
Keyword arguments:
5674
5682
5675
5683
bins:
5676
-
5677
5684
either an integer number of bins or a sequence giving the
5678
5685
bins. x are the data to be binned. x can be an array or a
5679
5686
2D array with multiple data in its columns. Note, if bins
@@ -5884,8 +5891,8 @@ def hist(self, x, bins=10, range=None, normed=False, cumulative=False,
5884
5891
raise ValueError , 'invalid orientation: %s' % orientation
5885
5892
5886
5893
elif histtype .startswith ('step' ):
5887
- x = np .zeros ( 2 * len (bins ), np .float_ )
5888
- y = np .zeros ( 2 * len (bins ), np .float_ )
5894
+ x = np .zeros ( 2 * len (bins ), np .float )
5895
+ y = np .zeros ( 2 * len (bins ), np .float )
5889
5896
5890
5897
x [0 ::2 ], x [1 ::2 ] = bins , bins
5891
5898
0 commit comments