-
Notifications
You must be signed in to change notification settings - Fork 552
/
Copy pathvisualization.py
102 lines (83 loc) · 3.25 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
"""visualization.py
The BBoxVisualization class implements drawing of nice looking
bounding boxes based on object detection results.
"""
import numpy as np
import cv2
# Constants
ALPHA = 0.5
FONT = cv2.FONT_HERSHEY_PLAIN
TEXT_SCALE = 1.0
TEXT_THICKNESS = 1
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
def gen_colors(num_colors):
"""Generate different colors.
# Arguments
num_colors: total number of colors/classes.
# Output
bgrs: a list of (B, G, R) tuples which correspond to each of
the colors/classes.
"""
import random
import colorsys
hsvs = [[float(x) / num_colors, 1., 0.7] for x in range(num_colors)]
random.seed(1234)
random.shuffle(hsvs)
rgbs = list(map(lambda x: list(colorsys.hsv_to_rgb(*x)), hsvs))
bgrs = [(int(rgb[2] * 255), int(rgb[1] * 255), int(rgb[0] * 255))
for rgb in rgbs]
return bgrs
def draw_boxed_text(img, text, topleft, color):
"""Draw a transluent boxed text in white, overlayed on top of a
colored patch surrounded by a black border. FONT, TEXT_SCALE,
TEXT_THICKNESS and ALPHA values are constants (fixed) as defined
on top.
# Arguments
img: the input image as a numpy array.
text: the text to be drawn.
topleft: XY coordinate of the topleft corner of the boxed text.
color: color of the patch, i.e. background of the text.
# Output
img: note the original image is modified inplace.
"""
assert img.dtype == np.uint8
img_h, img_w, _ = img.shape
if topleft[0] >= img_w or topleft[1] >= img_h:
return img
margin = 3
size = cv2.getTextSize(text, FONT, TEXT_SCALE, TEXT_THICKNESS)
w = size[0][0] + margin * 2
h = size[0][1] + margin * 2
# the patch is used to draw boxed text
patch = np.zeros((h, w, 3), dtype=np.uint8)
patch[...] = color
cv2.putText(patch, text, (margin+1, h-margin-2), FONT, TEXT_SCALE,
WHITE, thickness=TEXT_THICKNESS, lineType=cv2.LINE_8)
cv2.rectangle(patch, (0, 0), (w-1, h-1), BLACK, thickness=1)
w = min(w, img_w - topleft[0]) # clip overlay at image boundary
h = min(h, img_h - topleft[1])
# Overlay the boxed text onto region of interest (roi) in img
roi = img[topleft[1]:topleft[1]+h, topleft[0]:topleft[0]+w, :]
cv2.addWeighted(patch[0:h, 0:w, :], ALPHA, roi, 1 - ALPHA, 0, roi)
return img
class BBoxVisualization():
"""BBoxVisualization class implements nice drawing of boudning boxes.
# Arguments
cls_dict: a dictionary used to translate class id to its name.
"""
def __init__(self, cls_dict):
self.cls_dict = cls_dict
self.colors = gen_colors(len(cls_dict))
def draw_bboxes(self, img, boxes, confs, clss):
"""Draw detected bounding boxes on the original image."""
for bb, cf, cl in zip(boxes, confs, clss):
cl = int(cl)
x_min, y_min, x_max, y_max = bb[0], bb[1], bb[2], bb[3]
color = self.colors[cl]
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color, 2)
txt_loc = (max(x_min+2, 0), max(y_min+2, 0))
cls_name = self.cls_dict.get(cl, 'CLS{}'.format(cl))
txt = '{} {:.2f}'.format(cls_name, cf)
img = draw_boxed_text(img, txt, txt_loc, color)
return img