- Scraped job information, including Job Title, Company Name, Experience, Location, Salary, and Skills.
- Established a DataFrame to organize and store the collected data.
- Visualized the number of jobs per company using a Bar Chart, Distribution of Experience,
Distribution of Job Title, Top 10 Skills in Demand and Distribution of Joblistings across Locations.
Technical Documentation:
1. Dependencies:
- Pandas
- Matplotlib
- Seaborn
2. User-defined Functions:
- create_dataframe(titles, companies, experiences, locations, salaries, skills):
Takes lists of job-related information and returns a DataFrame.
- visualize_data(df):
Plots a bar chart of the number of jobs per company using Matplotlib.
3. Visualization Functions:
- visualize_data(df):
Bar chart showing the number of jobs per company.
- plt.figure(figsize=(10, 8))
sns.histplot(df['Experience'], bins=20, color='green', kde=True)
Histogram showing the distribution of experience.
- plt.figure(figsize=(12, 10))
sns.countplot(y='Job Title', data=df, order=df['Job Title'].value_counts().index, palette='viridis')
Count plot showing the distribution of job titles.
- plt.figure(figsize=(12, 8)
sns.barplot(x=top_skills.values, y=top_skills.index)
Horizontal Bar Chart showing top 10 demanding skills for Data-Science jobs.
- plt.figure(figsize=(12, 10))
sns.countplot(y='Location', data=df, order=df['Location'].value_counts().index, palette='viridis')
Countplot showing the number of jobs across locations.
4. How to Use:
- Call create_dataframe() with the lists of job-related information.
- Call visualize_data() with the created DataFrame for data visualization.
-
Notifications
You must be signed in to change notification settings - Fork 0
khanimrangithu/Navigating-the-Data-Science-Job-Landscape
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Web Scraping by Selenium
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published