Skip to content

Commit 27305c6

Browse files
datacamp data science
1 parent a2abc2c commit 27305c6

File tree

6 files changed

+552
-0
lines changed

6 files changed

+552
-0
lines changed
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"cells": [],
3+
"metadata": {},
4+
"nbformat": 4,
5+
"nbformat_minor": 2
6+
}

Datacamp/IntermediatePython/Matplotlib.ipynb

Lines changed: 449 additions & 0 deletions
Large diffs are not rendered by default.
Binary file not shown.
Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,6 @@
1+
{
2+
"cells": [],
3+
"metadata": {},
4+
"nbformat": 4,
5+
"nbformat_minor": 2
6+
}
682 KB
Binary file not shown.
Lines changed: 91 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,91 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "code",
5+
"execution_count": 2,
6+
"metadata": {},
7+
"outputs": [],
8+
"source": [
9+
"import matplotlib.pyplot as plt\n",
10+
"import seaborn as sns"
11+
]
12+
},
13+
{
14+
"cell_type": "code",
15+
"execution_count": 3,
16+
"metadata": {},
17+
"outputs": [
18+
{
19+
"data": {
20+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD8CAYAAABXe05zAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEhRJREFUeJzt3X9w5PVdx/HXe7PsEdJQltySYgOeODWdquWHK1OI04HWMoAOtmNHQdu0tebsnDowo6Ogjr9mHKf+0am/qr2A2ihiLSW2YinFFqZTFOoevTt+HGmBodMc9G6JoRdCvG2yb//Y74a9sJv9bm4/u/lcn4+ZnWy++9nv93WffPO6zSffvTN3FwAgHpl+BwAAdIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMhQ3AEQmG2KnO3fu9F27doXYNQCckvbt2/eCuxfSjA1S3Lt27VKpVAqxawA4JZnZN9OOZakEACJDcQNAZChuAIgMxQ0AkaG4ASAybYvbzMbNbH/D7ZiZ3dSLcAC2rlp1lZeO6/DiyyovHVe1yn+acqpoezmgu89JukiSzGxA0mFJs4FzATgJ1apr7siSpmZKml9c0Vh+UNOTRY2PDiuTsX7Hw0nqdKnk7ZKedvfU1xsC6L2F5cp6aUvS/OKKpmZKWliu9DkZuqHT4r5e0h3NHjCz3WZWMrNSuVw++WQAtqyyurZe2nXziyuqrK71KRG6KXVxm1lO0nWSPtXscXff6+5Fdy8WCqnetQkgkFx2QGP5wRO2jeUHlcsO9CkRuqmTV9zXSHrE3Y+ECgOgO0aGcpqeLK6Xd32Ne2Qo1+dk6IZO/q2SG9RimQTA9pLJmMZHhzW7Z0KV1TXlsgMaGcrxi8lTRKriNrMzJL1D0q+EjQOgWzIZU2F4R79jIIBUxe3uL0saCZwFAJAC75wEgMhQ3AAQGYobACJDcQNAZChuAIgMxQ0AkaG4ASAyFDcARIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMhQ3AESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDIUNwBEJlVxm9lZZnanmT1pZofM7LLQwXqlWnWVl47r8OLLKi8dV7Xq/Y4EAJvKphz355I+7+7vNrOcpDMCZuqZatU1d2RJUzMlzS+uaCw/qOnJosZHh5XJWL/jAUBTbV9xm9mZkt4q6TZJcveKu78YOlgvLCxX1ktbkuYXVzQ1U9LCcqXPyQCgtTRLJRdIKkv6ezP7mpndamZDGweZ2W4zK5lZqVwudz1oCJXVtfXSrptfXFFlda1PiQCgvTTFnZV0iaS/cfeLJS1LunnjIHff6+5Fdy8WCoUuxwwjlx3QWH7whG1j+UHlsgN9SgQA7aUp7nlJ8+7+cPL5naoVefRGhnKaniyul3d9jXtkKNfnZADQWttfTrr7t83sW2Y27u5zkt4u6Ynw0cLLZEzjo8Oa3TOhyuqactkBjQzl+MUkgG0t7VUlvy7p9uSKkmckfSBcpN7KZEyF4R39jgEAqaUqbnffL6kYOAsAIAXeOQkAkaG4ASAyFDcARIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMhQ3AESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDIUNwBEhuIGgMhQ3AAQGYobACJDcQNAZLJpBpnZs5KWJK1JWnX3YshQAIDWUhV34kp3fyFYEgBAKiyVAEBk0ha3S/qCme0zs90hAwEANpd2qWTC3Z8zs3Mk3WdmT7r7lxsHJIW+W5LOP//8LscEANSlesXt7s8lH49KmpV0aZMxe9296O7FQqHQ3ZQAgHVti9vMhsxsuH5f0lWSHgsdDADQXJqlklFJs2ZWH//P7v75oKkAAC21LW53f0bShT3IAgBIgcsBASAyFDcARIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMhQ3AESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDIUNwBEhuIGgMhQ3AAQGYobACJDcQNAZChuAIgMxQ0AkUld3GY2YGZfM7O7QwYCAGwu28HYGyUdknRmoCxbVq26FpYrqqyuKZcd0MhQTpmM9TsWAASR6hW3mY1J+ilJt4aN07lq1TV3ZEnv+tiDmvjw/XrXxx7U3JElVave72gAEETapZKPSvotSdWAWbZkYbmiqZmS5hdXJEnziyuamilpYbnS52QAEEbb4jazn5Z01N33tRm328xKZlYql8tdC9hOZXVtvbTr5hdXVFld61kGAOilNK+4JyRdZ2bPSvoXSW8zs3/aOMjd97p70d2LhUKhyzFby2UHNJYfPGHbWH5QuexAzzIAQC+1LW53v8Xdx9x9l6TrJX3J3d8TPFlKI0M5TU8W18t7LD+o6cmiRoZyfU4GAGF0clXJtpTJmMZHhzW7Z4KrSgB8T+iouN39AUkPBElyEjIZU2F4R79jAEBP8M5JAIgMxQ0AkaG4ASAyFDcARIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMhQ3AESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDIUNwBEhuIGgMhQ3AAQGYobACJDcQNAZNoWt5mdbmZfNbMDZva4mf1RL4IBAJrLphhzXNLb3P0lMztN0lfM7B53fyhwNgCIQrXqWliuqLK6plx2QCNDOWUyFux4bYvb3V3SS8mnpyU3D5YIACJSrbrmjixpaqak+cUVjeUHNT1Z1PjocLDyTrXGbWYDZrZf0lFJ97n7w0HSAEBkFpYr66UtSfOLK5qaKWlhuRLsmKmK293X3P0iSWOSLjWzH9k4xsx2m1nJzErlcrnbOQFgW6qsrq2Xdt384ooqq2vBjtnRVSXu/qKkByRd3eSxve5edPdioVDoUjwA2N5y2QGN5QdP2DaWH1QuOxDsmGmuKimY2VnJ/UFJPynpyWCJACAiI0M5TU8W18u7vsY9MpQLdsw0V5WcK+kTZjagWtH/q7vfHSwRAEQkkzGNjw5rds/Etrqq5KCki4MlAIDIZTKmwvCO3h2vZ0cCAHQFxQ0AkaG4ASAyFDcARIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMhQ3AESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDIUNwBEhuIGgMhQ3AAQGYobACJDcQNAZNoWt5mdZ2b3m9khM3vczG7sRTAAQHPZFGNWJf2Guz9iZsOS9pnZfe7+ROBsCKRadS0sV1RZXVMuO6CRoZwyGet3LAAptS1ud39e0vPJ/SUzOyTp9ZIo7ghVq665I0uamilpfnFFY/lBTU8WNT46THkDkehojdvMdkm6WNLDIcIgvIXlynppS9L84oqmZkpaWK70ORmAtFIXt5m9RtKnJd3k7seaPL7bzEpmViqXy93MiC6qrK6tl3bd/OKKKqtrfUoEoFOpitvMTlOttG9397uajXH3ve5edPdioVDoZkZ0US47oLH84AnbxvKDymUH+pQIQKfSXFVikm6TdMjdPxI+EkIaGcpperK4Xt71Ne6RoVyfkwFIK81VJROS3ivpUTPbn2z7HXf/XLhYCCWTMY2PDmt2zwRXlQCRSnNVyVck8V19CslkTIXhHf2OAWCLeOckAESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDIUNwBEhuIGgMhQ3AAQGYobACJDcQNAZChuAIgMxQ0AkaG4ASAyFDcARIbiBoDIUNwAEBmKGwAiQ3EDQGQobgCIDMUNAJGhuAEgMm2L28z+zsyOmtljvQgEANhcmlfc/yDp6sA5VK26ykvHdXjxZZWXjqta9dCHBIAoZdsNcPcvm9mukCGqVdfckSVNzZQ0v7iisfygpieLGh8dViZjIQ8NANHZFmvcC8uV9dKWpPnFFU3NlLSwXOlzMgDYfrpW3Ga228xKZlYql8sdPbeyurZe2nXziyuqrK51Kx4AnDK6Vtzuvtfdi+5eLBQKHT03lx3QWH7whG1j+UHlsgPdigcAp4xtsVQyMpTT9GRxvbzra9wjQ7k+JwOA7aftLyfN7A5JV0jaaWbzkv7A3W/rZohMxjQ+OqzZPROqrK4plx3QyFCOX0wCQBNpriq5oRdBMhlTYXhHLw4FAFHbFkslAID0KG4AiAzFDQCRobgBIDIUNwBExty7/485mVlZ0je3+PSdkl7oYpxuIVdnyNUZcnXmVMz1/e6e6t2LQYr7ZJhZyd2L/c6xEbk6Q67OkKsz3+u5WCoBgMhQ3AAQme1Y3Hv7HaAFcnWGXJ0hV2e+p3NtuzVuAMDmtuMrbgDAZty9azdJ50m6X9IhSY9LujHZfrak+yR9I/mYT7abpL+Q9JSkg5IuadjX+5Lx35D0vhbHa7rfULkkXSTpv5N9HJT08y2O935JZUn7k9sv92C+1hqO99kWx9sh6ZPJ8x+WtCvwfF3ZkGm/pP+T9M4eztcbk6/XcUm/uWFfV0uaSzLf3OP5apqr1X6aHO8KSd9pmK/f78F8PSvp0eR4pRbHa3l+Bpqv8Q3n1zFJN211vraY7ReTP+tBSf8l6cIQ59irnpdmUNqbpHP1yjftsKSvS3qTpD+rB5d0s6QPJ/evlXRP8gV/i6SHGybpmeRjPrn/qlJutd+AuX5I0huS+98n6XlJZ7Uoor/q1Xwlj72U4nh7JP1tcv96SZ8Mnathn2dL+l9JZ/Rwvs6R9OOS/kQnfsMPSHpa0gWScpIOSHpTD+erVa6m+2lyvCsk3d2r+Uoee1bSzjbHa3sedDvXhq/pt1W7FnpL87XFbJfrlRK/Rq90RVfPsVc9L82grd4kfUbSO1T7W+fchomZS+5/XNINDePnksdvkPTxhu0njNs4fuN+Q+Vqsp8DSop8w/b3K0URdTOX0hX3vZIuS+5nVXujgPViviTtlnR7i/0Hma+GcX+oEwvyMkn3Nnx+i6RbejVfrXK12k+T7VcoZRF1K5fSFXeq75sQ8yXpKkkPtnhsS/PVSbZke17S4V6cY8HWuJP/Gf5i1V7+j7r785KUfDwnGfZ6Sd9qeNp8sq3V9o1a7TdUrsb9XKra36RPtzjUz5rZQTO708zO60Gu05P/8/MhM3tni8OsP9/dV1X78XEkcK666yXdscmhQsxXK2nPr1Dz1daG/TRzmZkdMLN7zOyHO9zfVnK5pC+Y2T4z291iTNp57WauunbnV0fztcVsH1TtJw4p4DkmBfrlpJm9RtKnVVtvOrbZ0CbbfJPt/c5V38+5kv5R0gfcvdpk7L+rtlb1Zkn/KekTPch1vtfesfULkj5qZj/Y4fND5arP14+q9uqimVDztaW8WxjXrVxp9/OIaksCF0r6S0n/dpL7S2PC3S9RbTngV83src0O1WRbL+YrJ+k6SZ9qMaSj+dpKNjO7UrXi/u36pibDTvocq+t6cZvZaar9gW9397uSzUeSb976N/HRZPu8ar8MqBuT9Nwm2zdqtd9QuWRmZ0r6D0m/5+4PNTuWuy+4+/Hk02lJPxY6l7vXPz4j6QHVXilstP58M8tKeq1q687BciV+TtKsu3+32bECzlcrac+vUPPVUov9nMDdj7n7S8n9z0k6zcx2hszVcH4dlTQr6dImw9LOa9dyJa6R9Ii7H2mRPfV8bSWbmb1Z0q2SfsbdF5LNXT/HGnW1uM3MJN0m6ZC7f6Thoc+qdpWIko+fadg+aTVvkfSd5MeQeyVdZWZ5M8urtn7V7NVaq/0GyZX8zT4racbdW/3tXv/C1l2n2m+oQ+bKm9mOZJ87JU1IeqLJIRv3+25JX/JkcS1Erobn3aBNfowNOF+t/I+kN5jZDyRf0+uTfWwUar6a2mQ/G8e9LhlbX7LLSFpoMq5buYbMbLh+X7Xvx8eaDG13HnQ1V4N251eq+dpKNjM7X9Jdkt7r7l9vGN/Vc+xVtrJg3+om6SdUe5l/UK9cenOtams2X1TtUpovSjo7GW+S/lq1deJHJRUb9vVLql0i85RqSxL17bfWx7Xab6hckt4j6bs68RKki5LH/ljSdcn9P1XtUqIDql1a9MbAuS5PPj+QfPxgwzEac52u2o+TT0n6qqQLevB13CXpsKTMhmP0Yr5ep9ormmOSXkzun5k8dq1qVww8Lel3ezxfTXO12k/ynA9J+lBy/9ca5ushSZcHznVBcqwDyXEb56sxV8vzIODX8QzVSvi1G47R8XxtMdutkhYbxpYa9tW1c2zjjXdOAkBkeOckAESG4gaAyFDcABAZihsAIkNxA0BkKG4AiAzFDQCRobgBIDL/D8mBx6GWKIE4AAAAAElFTkSuQmCC\n",
21+
"text/plain": [
22+
"<Figure size 432x288 with 1 Axes>"
23+
]
24+
},
25+
"metadata": {
26+
"needs_background": "light"
27+
},
28+
"output_type": "display_data"
29+
}
30+
],
31+
"source": [
32+
"year=[2000,2001,2002,2006,2014,2020]\n",
33+
"pop=[1,4,6,2,7,3]\n",
34+
"sns.scatterplot(x=year,y=pop)\n",
35+
"plt.show()"
36+
]
37+
},
38+
{
39+
"cell_type": "code",
40+
"execution_count": 7,
41+
"metadata": {},
42+
"outputs": [
43+
{
44+
"data": {
45+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEKCAYAAAACS67iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAEndJREFUeJzt3X+w3XV95/Hnq4QUA4kJCVAbsNEWqS2z/GjKSKm0gGstWtFqd3QWF23X7DgqYDvr2HZmu/3DTutYtzq7wwwiSivS0QD9XQpD0Q67K2yAqMHAYinFQCD8lIBbQ+C9f5xv0ivcm/vj+z3fc+83z8fMnXvOud9zPu+cyX3lk8/5ft+fVBWSpKXvByZdgCSpGwa6JA2EgS5JA2GgS9JAGOiSNBAGuiQNhIEuSQNhoEvSQBjokjQQy/ocbN26dbVhw4Y+h5SkJe+22257tKqOmu24XgN9w4YNbNmypc8hJWnJS/LPczmu10Df+8jjPHLJ5/scUurUUe87f9IlSDNyDV2SBsJAl6SBaBXoSS5PsivJtq4KkiQtTNsZ+ueAN3RQhySppVaBXlX/ADzeUS2SpBZcQ5ekgRh7oCfZlGRLki2PPf3UuIeTpIPW2AO9qi6tqo1VtXHtEavGPZwkHbRccpGkgWh72uJVwP8GTkiyI8mvdVOWJGm+Wl36X1Xv7KoQSVI7LrlI0kD02pxr2VFH2txIksbEGbokDYSBLkkDYaBL0kD0uoa+Z9d97Pjvv9rnkJI0ccd+4PJexnGGLkkDYaBL0kAsONCTHJfkpiTbk9yZ5KIuC5MkzU+bNfS9wG9U1e1JVgK3Jbmhqr7ZUW2SpHlY8Ay9qnZW1e3N7d3AdmB9V4VJkuankzX0JBuAU4BbpvnZ/n7ojz/9L10MJ0maRutAT3IEcDVwcVW9aAeLqf3QjzzisLbDSZJm0LZ97qGMwvzKqrqmm5IkSQvR5iyXAJ8BtlfVJ7orSZK0EG1m6GcA7wLOTrK1+Tq3o7okSfO04NMWq+pmIB3WIklqwStFJWkgem3OtfzoDb01qZGkg40zdEkaCANdkgai1yWX3Y/ew02XvbHPIbUAZ/3Hv550CZIWwBm6JA2EgS5JA2GgS9JAtLn0/7Aktyb5WrPBxe92WZgkaX7afCj6PeDsqnq6adJ1c5K/raqvdlSbJGke2lz6X8DTzd1Dm6/qoihJ0vy1bZ97SJKtwC7ghqo64AYX39m9p81wkqQDaBXoVfVcVZ0MHAucluTEaY7Zv8HFS1cubzOcJOkAOjnLpaqeBL4MvKGL15MkzV+bs1yOSrK6uf0S4HXAXV0VJkmanzZnubwMuCLJIYz+YfhiVf1VN2VJkuarzVkuXwdO6bAWSVILXikqSQPRa7fFleuOt5OfJI2JM3RJGggDXZIGotcll8ce+7987orX9zmkNGjvvuD6SZegRcQZuiQNhIEuSQPROtCbBl13JPGiIkmaoC5m6BcB2zt4HUlSC23b5x4LvBG4rJtyJEkL1XaG/kfAh4HnO6hFktRCm26LbwJ2VdVtsxy3f4OL3bufXehwkqRZtJmhnwG8Ocl9wJ8CZyf5/AsPmrrBxcqVh7YYTpJ0IAsO9Kr6zao6tqo2AO8A/r6qzu+sMknSvHgeuiQNRCeX/lfVlxltQSdJmhBn6JI0EAa6JA1Er90W1659ld3hJGlMnKFL0kAY6JI0EL0uuTzwxD389pfe0OeQS8ZHf+W6SZcgaYlzhi5JA2GgS9JAtFpyafq47AaeA/ZW1cYuipIkzV8Xa+hnVdWjHbyOJKkFl1wkaSDaBnoB1ye5LcmmLgqSJC1M2yWXM6rqwSRHAzckuauq/mHqAU3QbwJYte6wlsNJkmbSaoZeVQ8233cB1wKnTXPM/g0uVqxa3mY4SdIBtNmC7vAkK/fdBl4PbOuqMEnS/LRZcjkGuDbJvtf5QlV5uaMkTciCA72q7gVO6rAWSVILnrYoSQPRa3Ou9WuOtwmVJI2JM3RJGggDXZIGwkCXpIHodQ39nicf4Nw/+60+h9QA/M1bfm/SJUhLgjN0SRoIA12SBqJVoCdZnWRzkruSbE9yeleFSZLmp+0a+ieB66rq7UmWAys6qEmStAALDvQkq4AzgXcDVNUeYE83ZUmS5qvNkssrgUeAzya5I8llTdfF75NkU5ItSbbseeq7LYaTJB1Im0BfBpwKXFJVpwDPAB954UFT+6EvX+WKjCSNS5tA3wHsqKpbmvubGQW8JGkCFhzoVfUQ8O0kJzQPnQN8s5OqJEnz1vYslw8CVzZnuNwLvKd9SZKkhWgV6FW1FdjYUS2SpBa8UlSSBqLX5lzHr15voyVJGhNn6JI0EAa6JA1Ev/3Qn3iUN1796T6H1AD89dveO+kSpCXBGbokDYSBLkkDseBAT3JCkq1Tvp5KcnGXxUmS5m7Ba+hVdTdwMkCSQ4AHgGs7qkuSNE9dLbmcA/xjVf1zR68nSZqnrgL9HcBVHb2WJGkBWgd605jrzcCXZvj5lA0udrcdTpI0gy5m6L8I3F5VD0/3w+/f4GJlB8NJkqbTRaC/E5dbJGniWgV6khXAvwWu6aYcSdJCte2H/l1gbUe1SJJa8EpRSRoIA12SBqLfDS7WrLNzniSNiTN0SRoIA12SBqLXJZdvPfEkv7TZ/l3T+cu3v3XSJUha4pyhS9JAGOiSNBBtrxT9UJI7k2xLclWSw7oqTJI0P212LFoPXAhsrKoTgUMYtdGVJE1A2yWXZcBLkiwDVgAPti9JkrQQCw70qnoA+DhwP7AT+E5VXd9VYZKk+Wmz5LIGOA94BfDDwOFJzp/muCkbXDy18EolSQfUZsnldcA/VdUjVfUsoxa6P/PCg75/g4tVLYaTJB1Im0C/H3hNkhVJwmij6O3dlCVJmq82a+i3AJuB24FvNK91aUd1SZLmqe0GF78D/E5HtUiSWvBKUUkaiF6bc/3YmtU2oZKkMXGGLkkDYaBL0kAY6JI0EL2uof/jE8/wtqtv7XPIGV39ttMmXYIkdcoZuiQNhIEuSQPRdoOLi5rNLe5McnFXRUmS5q9Nt8UTgfcCpwEnAW9KcnxXhUmS5qfNDP3VwFer6rtVtRf4CuBVQ5I0IW0CfRtwZpK1SVYA5wLHdVOWJGm+FnzaYlVtT/IHwA3A08DXgL0vPC7JJmATwEvW/dBCh5MkzaLVh6JV9ZmqOrWqzgQeB+6Z5pj9G1z84KrVbYaTJB1AqwuLkhxdVbuSvBz4ZeD0bsqSJM1X2ytFr06yFngWeH9VPdFBTZKkBWi7wcVruypEktSOV4pK0kD02pzrR9ccblMsSRoTZ+iSNBAGuiQNhIEuSQPR6xr6w08+yyeufajPIZeMX3+rV9FKascZuiQNhIEuSQMxp0BPcl+SbyTZmmTLlMc/mOTuZoOLj42vTEnSbOazhn5WVT26706Ss4DzgH9TVd9LcnTn1UmS5qzNksv7gN+vqu8BVNWubkqSJC3EXAO9gOuT3Nb0Nwd4FfDaJLck+UqSn57uiUk2JdmSZMszTz3WRc2SpGnMdcnljKp6sFlWuSHJXc1z1wCvAX4a+GKSV1ZVTX1iVV0KXApw3I+dVEiSxmJOM/SqerD5vgu4ltHG0DuAa2rkVuB5YN24CpUkHdisgZ7k8CQr990GXs9oP9E/A85uHn8VsBx4dKbXkSSN11yWXI4Brk2y7/gvVNV1SZYDlyfZBuwBLnjhcoskqT+zBnpV3QucNM3je4Dzx1GUJGn+vFJUkgai1+Zcx6w+1CZUkjQmztAlaSAMdEkaiF6XXHY/vpcvf/6RPoec0c+ff9SkS5CkTjlDl6SBMNAlaSDm2g99dZLNSe5Ksj3J6Un+a5IHmh7pW5OcO+5iJUkzm+sa+ieB66rq7c0VoiuAXwD+W1V9fGzVSZLmbNZAT7IKOBN4N+y/QnRP0wpAkrRIzGXJ5ZXAI8Bnk9yR5LKmSRfAB5J8PcnlSdaMr0xJ0mzmEujLgFOBS6rqFOAZ4CPAJcCPAicDO4E/nO7JUze4+I4bXEjS2Mwl0HcAO6rqlub+ZuDUqnq4qp6rqueBTzPqkf4iVXVpVW2sqo0vXbW2m6olSS8ya6BX1UPAt5Oc0Dx0DvDNJC+bcthbGfVIlyRNyFzPcvkgcGVzhsu9wHuATyU5mdF+o/cB/2ksFUqS5mROgV5VW4GNL3j4Xd2XI0laKK8UlaSBMNAlaSB67ba48shldjmUpDFxhi5JA2GgS9JA9Lrk8uxDz7LzYzv7HHJGL/vwy2Y/SJKWEGfokjQQBrokDcRcN7i4KMm2JHcmubh57MgkNyS5p/lut0VJmqBZAz3JicB7GTXfOgl4U5LjGXVcvLGqjgdubO5LkiZkLjP0VwNfrarvVtVe4CuMmnGdB1zRHHMF8JbxlChJmou5BPo24Mwka5OsAM4FjgOOqaqdAM33o8dXpiRpNrOetlhV25P8AXAD8DTwNWDvXAdIsgnYBLB+9foFlilJms2cPhStqs9U1alVdSbwOHAP8PC+nujN910zPHf/BhdrD3eDC0kal7me5XJ08/3lwC8DVwF/AVzQHHIB8OfjKFCSNDdzvVL06iRrgWeB91fVE0l+H/hikl8D7gd+ZVxFSpJmN9cNLl47zWOPMdqOTpK0CHilqCQNRK/NuQ79oUNtiiVJY+IMXZIGwkCXpIEw0CVpIPrd4GLX0zz8qZv7HHJGx1z4s5MuQZI65QxdkgbCQJekgWizwcXJSb6aZGuSLUlOG2+pkqQDabPBxceA362qk4H/0tyXJE3IXD4U3b/BBUCSfRtcFLCqOealwINjqVCSNCdzCfRtwEeb5lz/j9EGF1uAi4G/S/JxRjP9n5nuyVP7oR+75pguapYkTWPWJZeq2g7s2+DiOv51g4v3AR+qquOADwGfmeH5+/uhH3nE6s4KlyR9vzYbXFwAXNMc8iVGa+ySpAlps8HFg8DPNYeczSjkJUkT0maDi/cCn0yyDPgXmnVySdJktNng4mbgpzqvSJK0IF4pKkkD0e8GF0cfYVMsSRoTZ+iSNBCpqv4GS3YDd/c24NKyDnh00kUsUr43M/O9md7Q3pcfqaqjZjuo1yUX4O6q2tjzmEtCki2+N9PzvZmZ7830Dtb3xSUXSRoIA12SBqLvQL+05/GWEt+bmfnezMz3ZnoH5fvS64eikqTxcclFkgail0BP8oYkdyf5VpKP9DHmUpDkuCQ3JdnebO930aRrWmySHJLkjiR/NelaFpMkq5NsTnJX8/fn9EnXtFgk+VDz+7QtyVVJDpt0TX0Ze6AnOQT4H8AvAj8BvDPJT4x73CViL/AbVfVq4DXA+31vXuQiYPuki1iEPglcV1U/zmhrSN8jIMl64EJgY1WdCBwCvGOyVfWnjxn6acC3qureqtoD/ClwXg/jLnpVtbOqbm9u72b0S7l+slUtHkmOBd4IXDbpWhaTJKuAM2k2lamqPVX15GSrWlSWAS9pOsGu4CDaHrOPQF8PfHvK/R0YWi+SZANwCnDLZCtZVP4I+DDw/KQLWWReCTwCfLZZjrosyeGTLmoxqKoHgI8D9wM7ge9U1fWTrao/fQR6pnnMU2umSHIEcDVwcVU9Nel6FoMkbwJ2VdVtk65lEVoGnApcUlWnAM8AfjYFJFnDaAXgFcAPA4cnOX+yVfWnj0DfARw35f6xHET/BZpNkkMZhfmVVXXNbMcfRM4A3pzkPkbLdGcn+fxkS1o0dgA7qmrf/+Y2Mwp4weuAf6qqR6rqWUbbZE67gf0Q9RHo/wc4Pskrkixn9AHFX/Qw7qKXJIzWQbdX1ScmXc9iUlW/WVXHVtUGRn9n/r6qDpqZ1oFU1UPAt5Oc0Dx0DvDNCZa0mNwPvCbJiub36xwOog+Mx96cq6r2JvkA8HeMPnG+vKruHPe4S8QZwLuAbyTZ2jz2W1X1NxOsSUvDB4Erm0nSvcB7JlzPolBVtyTZDNzO6CyyOziIrhr1SlFJGgivFJWkgTDQJWkgDHRJGggDXZIGwkCXpIEw0KV5SnJxkhWTrkN6IU9blOapuXp1Y1UNaVd5DYAzdA1Skv+Q5OtJvpbkT5L8SJIbm8duTPLy5rjPJXn7lOc93Xz/+SRfntJz/MqMXMioR8hNSW6azJ9Omt7YrxSV+pbkJ4HfBs6oqkeTHAlcAfxxVV2R5FeBTwFvmeWlTgF+klHvof/ZvN6nkvw6cJYzdC02ztA1RGcDm/cFblU9DpwOfKH5+Z8APzuH17m1qnZU1fPAVmDDGGqVOmOga4jC7C2a9/18L83vQdPMafmUY7435fZz+D9aLXIGuoboRuDfJVkL0Cy5/C/+dSuyfw/c3Ny+D/ip5vZ5wKFzeP3dwMquipW64oxDg1NVdyb5KPCVJM8x6rh3IXB5kv/MaLeffd0JPw38eZJbGf1D8MwchrgU+NskO6vqrO7/BNLCeNqiJA2ESy6SNBAGuiQNhIEuSQNhoEvSQBjokjQQBrokDYSBLkkDYaBL0kD8f0AU4kXxy7hyAAAAAElFTkSuQmCC\n",
46+
"text/plain": [
47+
"<Figure size 432x288 with 1 Axes>"
48+
]
49+
},
50+
"metadata": {
51+
"needs_background": "light"
52+
},
53+
"output_type": "display_data"
54+
}
55+
],
56+
"source": [
57+
"pop=[1,4,1,2,4,5,6,3,2,1,2,5,6,7,8,8,56,4,2,2,1,2,4,56,7,9,90,6,4,3,2,1,2,4,65,7,98,6,2,7,3]\n",
58+
"sns.countplot(y=pop)\n",
59+
"plt.show()"
60+
]
61+
},
62+
{
63+
"cell_type": "code",
64+
"execution_count": null,
65+
"metadata": {},
66+
"outputs": [],
67+
"source": []
68+
}
69+
],
70+
"metadata": {
71+
"kernelspec": {
72+
"display_name": "Python 3",
73+
"language": "python",
74+
"name": "python3"
75+
},
76+
"language_info": {
77+
"codemirror_mode": {
78+
"name": "ipython",
79+
"version": 3
80+
},
81+
"file_extension": ".py",
82+
"mimetype": "text/x-python",
83+
"name": "python",
84+
"nbconvert_exporter": "python",
85+
"pygments_lexer": "ipython3",
86+
"version": "3.7.5"
87+
}
88+
},
89+
"nbformat": 4,
90+
"nbformat_minor": 2
91+
}

0 commit comments

Comments
 (0)