|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [ |
| 8 | + { |
| 9 | + "name": "stdout", |
| 10 | + "output_type": "stream", |
| 11 | + "text": [ |
| 12 | + "{'a': 45, 'b': 66, 'c': 44}\n" |
| 13 | + ] |
| 14 | + } |
| 15 | + ], |
| 16 | + "source": [ |
| 17 | + "d={'a':45,'b':66,'c':44}\n", |
| 18 | + "print(d)" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "code", |
| 23 | + "execution_count": 5, |
| 24 | + "metadata": {}, |
| 25 | + "outputs": [ |
| 26 | + { |
| 27 | + "data": { |
| 28 | + "text/plain": [ |
| 29 | + "dict_keys(['a', 'b', 'c'])" |
| 30 | + ] |
| 31 | + }, |
| 32 | + "execution_count": 5, |
| 33 | + "metadata": {}, |
| 34 | + "output_type": "execute_result" |
| 35 | + } |
| 36 | + ], |
| 37 | + "source": [ |
| 38 | + "d.keys()" |
| 39 | + ] |
| 40 | + }, |
| 41 | + { |
| 42 | + "cell_type": "code", |
| 43 | + "execution_count": 3, |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [ |
| 46 | + { |
| 47 | + "data": { |
| 48 | + "text/plain": [ |
| 49 | + "dict_values([45, 66, 44])" |
| 50 | + ] |
| 51 | + }, |
| 52 | + "execution_count": 3, |
| 53 | + "metadata": {}, |
| 54 | + "output_type": "execute_result" |
| 55 | + } |
| 56 | + ], |
| 57 | + "source": [ |
| 58 | + "d.values()" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "markdown", |
| 63 | + "metadata": {}, |
| 64 | + "source": [ |
| 65 | + "## 2" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": 11, |
| 71 | + "metadata": {}, |
| 72 | + "outputs": [ |
| 73 | + { |
| 74 | + "data": { |
| 75 | + "text/plain": [ |
| 76 | + "{'a': 45, 'b': 44, 'c': 44}" |
| 77 | + ] |
| 78 | + }, |
| 79 | + "execution_count": 11, |
| 80 | + "metadata": {}, |
| 81 | + "output_type": "execute_result" |
| 82 | + } |
| 83 | + ], |
| 84 | + "source": [ |
| 85 | + "d={'a':45,'b':66,'c':44,'b':44}\n", |
| 86 | + "d" |
| 87 | + ] |
| 88 | + }, |
| 89 | + { |
| 90 | + "cell_type": "code", |
| 91 | + "execution_count": 12, |
| 92 | + "metadata": {}, |
| 93 | + "outputs": [ |
| 94 | + { |
| 95 | + "data": { |
| 96 | + "text/plain": [ |
| 97 | + "True" |
| 98 | + ] |
| 99 | + }, |
| 100 | + "execution_count": 12, |
| 101 | + "metadata": {}, |
| 102 | + "output_type": "execute_result" |
| 103 | + } |
| 104 | + ], |
| 105 | + "source": [ |
| 106 | + "'b' in d" |
| 107 | + ] |
| 108 | + }, |
| 109 | + { |
| 110 | + "cell_type": "code", |
| 111 | + "execution_count": 13, |
| 112 | + "metadata": {}, |
| 113 | + "outputs": [ |
| 114 | + { |
| 115 | + "data": { |
| 116 | + "text/plain": [ |
| 117 | + "{'a': 45, 'b': 44, 'c': 123}" |
| 118 | + ] |
| 119 | + }, |
| 120 | + "execution_count": 13, |
| 121 | + "metadata": {}, |
| 122 | + "output_type": "execute_result" |
| 123 | + } |
| 124 | + ], |
| 125 | + "source": [ |
| 126 | + "d['c']=123\n", |
| 127 | + "d" |
| 128 | + ] |
| 129 | + }, |
| 130 | + { |
| 131 | + "cell_type": "code", |
| 132 | + "execution_count": 14, |
| 133 | + "metadata": {}, |
| 134 | + "outputs": [ |
| 135 | + { |
| 136 | + "data": { |
| 137 | + "text/plain": [ |
| 138 | + "{'a': 45, 'c': 123}" |
| 139 | + ] |
| 140 | + }, |
| 141 | + "execution_count": 14, |
| 142 | + "metadata": {}, |
| 143 | + "output_type": "execute_result" |
| 144 | + } |
| 145 | + ], |
| 146 | + "source": [ |
| 147 | + "del(d['b'])\n", |
| 148 | + "d" |
| 149 | + ] |
| 150 | + }, |
| 151 | + { |
| 152 | + "cell_type": "code", |
| 153 | + "execution_count": 3, |
| 154 | + "metadata": {}, |
| 155 | + "outputs": [ |
| 156 | + { |
| 157 | + "name": "stdout", |
| 158 | + "output_type": "stream", |
| 159 | + "text": [ |
| 160 | + "{'capital': 'paris', 'population': 66.03}\n", |
| 161 | + "{'spain': {'capital': 'madrid', 'population': 46.77}, 'france': {'capital': 'paris', 'population': 66.03}, 'germany': {'capital': 'berlin', 'population': 80.62}, 'norway': {'capital': 'oslo', 'population': 5.084}, 'italy': {'capital': 'rome', 'population': 59.83}}\n" |
| 162 | + ] |
| 163 | + } |
| 164 | + ], |
| 165 | + "source": [ |
| 166 | + "# Dictionary of dictionaries\n", |
| 167 | + "europe = { 'spain': { 'capital':'madrid', 'population':46.77 },\n", |
| 168 | + " 'france': { 'capital':'paris', 'population':66.03 },\n", |
| 169 | + " 'germany': { 'capital':'berlin', 'population':80.62 },\n", |
| 170 | + " 'norway': { 'capital':'oslo', 'population':5.084 } }\n", |
| 171 | + "# Print out the capital of France\n", |
| 172 | + "print(europe['france'])\n", |
| 173 | + "# Create sub-dictionary data\n", |
| 174 | + "data={'capital':'rome','population':59.83}\n", |
| 175 | + "# Add data to europe under key 'italy'\n", |
| 176 | + "europe['italy']=data\n", |
| 177 | + "# Print europe\n", |
| 178 | + "print(europe)" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "code", |
| 183 | + "execution_count": 4, |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [ |
| 186 | + { |
| 187 | + "data": { |
| 188 | + "text/html": [ |
| 189 | + "<div>\n", |
| 190 | + "<style scoped>\n", |
| 191 | + " .dataframe tbody tr th:only-of-type {\n", |
| 192 | + " vertical-align: middle;\n", |
| 193 | + " }\n", |
| 194 | + "\n", |
| 195 | + " .dataframe tbody tr th {\n", |
| 196 | + " vertical-align: top;\n", |
| 197 | + " }\n", |
| 198 | + "\n", |
| 199 | + " .dataframe thead th {\n", |
| 200 | + " text-align: right;\n", |
| 201 | + " }\n", |
| 202 | + "</style>\n", |
| 203 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 204 | + " <thead>\n", |
| 205 | + " <tr style=\"text-align: right;\">\n", |
| 206 | + " <th></th>\n", |
| 207 | + " <th>spain</th>\n", |
| 208 | + " <th>france</th>\n", |
| 209 | + " <th>germany</th>\n", |
| 210 | + " <th>norway</th>\n", |
| 211 | + " <th>italy</th>\n", |
| 212 | + " </tr>\n", |
| 213 | + " </thead>\n", |
| 214 | + " <tbody>\n", |
| 215 | + " <tr>\n", |
| 216 | + " <th>capital</th>\n", |
| 217 | + " <td>madrid</td>\n", |
| 218 | + " <td>paris</td>\n", |
| 219 | + " <td>berlin</td>\n", |
| 220 | + " <td>oslo</td>\n", |
| 221 | + " <td>rome</td>\n", |
| 222 | + " </tr>\n", |
| 223 | + " <tr>\n", |
| 224 | + " <th>population</th>\n", |
| 225 | + " <td>46.77</td>\n", |
| 226 | + " <td>66.03</td>\n", |
| 227 | + " <td>80.62</td>\n", |
| 228 | + " <td>5.084</td>\n", |
| 229 | + " <td>59.83</td>\n", |
| 230 | + " </tr>\n", |
| 231 | + " </tbody>\n", |
| 232 | + "</table>\n", |
| 233 | + "</div>" |
| 234 | + ], |
| 235 | + "text/plain": [ |
| 236 | + " spain france germany norway italy\n", |
| 237 | + "capital madrid paris berlin oslo rome\n", |
| 238 | + "population 46.77 66.03 80.62 5.084 59.83" |
| 239 | + ] |
| 240 | + }, |
| 241 | + "execution_count": 4, |
| 242 | + "metadata": {}, |
| 243 | + "output_type": "execute_result" |
| 244 | + } |
| 245 | + ], |
| 246 | + "source": [ |
| 247 | + "import pandas as pd\n", |
| 248 | + "d=pd.DataFrame(europe)\n", |
| 249 | + "d" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": null, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [], |
| 257 | + "source": [] |
| 258 | + } |
| 259 | + ], |
| 260 | + "metadata": { |
| 261 | + "kernelspec": { |
| 262 | + "display_name": "Python 3", |
| 263 | + "language": "python", |
| 264 | + "name": "python3" |
| 265 | + }, |
| 266 | + "language_info": { |
| 267 | + "codemirror_mode": { |
| 268 | + "name": "ipython", |
| 269 | + "version": 3 |
| 270 | + }, |
| 271 | + "file_extension": ".py", |
| 272 | + "mimetype": "text/x-python", |
| 273 | + "name": "python", |
| 274 | + "nbconvert_exporter": "python", |
| 275 | + "pygments_lexer": "ipython3", |
| 276 | + "version": "3.7.5" |
| 277 | + } |
| 278 | + }, |
| 279 | + "nbformat": 4, |
| 280 | + "nbformat_minor": 2 |
| 281 | +} |
0 commit comments