-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathSliceAnalysis.cpp
287 lines (251 loc) · 11.3 KB
/
SliceAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//===- UseDefAnalysis.cpp - Analysis for Transitive UseDef chains ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Analysis functions specific to slicing in Function.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
///
/// Implements Analysis functions specific to slicing in Function.
///
using namespace mlir;
static void
getForwardSliceImpl(Operation *op, SetVector<Operation *> *forwardSlice,
const SliceOptions::TransitiveFilter &filter = nullptr) {
if (!op)
return;
// Evaluate whether we should keep this use.
// This is useful in particular to implement scoping; i.e. return the
// transitive forwardSlice in the current scope.
if (filter && !filter(op))
return;
for (Region ®ion : op->getRegions())
for (Block &block : region)
for (Operation &blockOp : block)
if (forwardSlice->count(&blockOp) == 0)
getForwardSliceImpl(&blockOp, forwardSlice, filter);
for (Value result : op->getResults()) {
for (Operation *userOp : result.getUsers())
if (forwardSlice->count(userOp) == 0)
getForwardSliceImpl(userOp, forwardSlice, filter);
}
forwardSlice->insert(op);
}
void mlir::getForwardSlice(Operation *op, SetVector<Operation *> *forwardSlice,
const ForwardSliceOptions &options) {
getForwardSliceImpl(op, forwardSlice, options.filter);
if (!options.inclusive) {
// Don't insert the top level operation, we just queried on it and don't
// want it in the results.
forwardSlice->remove(op);
}
// Reverse to get back the actual topological order.
// std::reverse does not work out of the box on SetVector and I want an
// in-place swap based thing (the real std::reverse, not the LLVM adapter).
SmallVector<Operation *, 0> v(forwardSlice->takeVector());
forwardSlice->insert(v.rbegin(), v.rend());
}
void mlir::getForwardSlice(Value root, SetVector<Operation *> *forwardSlice,
const SliceOptions &options) {
for (Operation *user : root.getUsers())
getForwardSliceImpl(user, forwardSlice, options.filter);
// Reverse to get back the actual topological order.
// std::reverse does not work out of the box on SetVector and I want an
// in-place swap based thing (the real std::reverse, not the LLVM adapter).
SmallVector<Operation *, 0> v(forwardSlice->takeVector());
forwardSlice->insert(v.rbegin(), v.rend());
}
static void getBackwardSliceImpl(Operation *op,
SetVector<Operation *> *backwardSlice,
const BackwardSliceOptions &options) {
if (!op || op->hasTrait<OpTrait::IsIsolatedFromAbove>())
return;
// Evaluate whether we should keep this def.
// This is useful in particular to implement scoping; i.e. return the
// transitive backwardSlice in the current scope.
if (options.filter && !options.filter(op))
return;
auto processValue = [&](Value value) {
if (auto *definingOp = value.getDefiningOp()) {
if (backwardSlice->count(definingOp) == 0)
getBackwardSliceImpl(definingOp, backwardSlice, options);
} else if (auto blockArg = dyn_cast<BlockArgument>(value)) {
if (options.omitBlockArguments)
return;
Block *block = blockArg.getOwner();
Operation *parentOp = block->getParentOp();
// TODO: determine whether we want to recurse backward into the other
// blocks of parentOp, which are not technically backward unless they flow
// into us. For now, just bail.
if (parentOp && backwardSlice->count(parentOp) == 0) {
assert(parentOp->getNumRegions() == 1 &&
parentOp->getRegion(0).getBlocks().size() == 1);
getBackwardSliceImpl(parentOp, backwardSlice, options);
}
} else {
llvm_unreachable("No definingOp and not a block argument.");
}
};
if (!options.omitUsesFromAbove) {
llvm::for_each(op->getRegions(), [&](Region ®ion) {
// Walk this region recursively to collect the regions that descend from
// this op's nested regions (inclusive).
SmallPtrSet<Region *, 4> descendents;
region.walk(
[&](Region *childRegion) { descendents.insert(childRegion); });
region.walk([&](Operation *op) {
for (OpOperand &operand : op->getOpOperands()) {
if (!descendents.contains(operand.get().getParentRegion()))
processValue(operand.get());
}
});
});
}
llvm::for_each(op->getOperands(), processValue);
backwardSlice->insert(op);
}
void mlir::getBackwardSlice(Operation *op,
SetVector<Operation *> *backwardSlice,
const BackwardSliceOptions &options) {
getBackwardSliceImpl(op, backwardSlice, options);
if (!options.inclusive) {
// Don't insert the top level operation, we just queried on it and don't
// want it in the results.
backwardSlice->remove(op);
}
}
void mlir::getBackwardSlice(Value root, SetVector<Operation *> *backwardSlice,
const BackwardSliceOptions &options) {
if (Operation *definingOp = root.getDefiningOp()) {
getBackwardSlice(definingOp, backwardSlice, options);
return;
}
Operation *bbAargOwner = cast<BlockArgument>(root).getOwner()->getParentOp();
getBackwardSlice(bbAargOwner, backwardSlice, options);
}
SetVector<Operation *>
mlir::getSlice(Operation *op, const BackwardSliceOptions &backwardSliceOptions,
const ForwardSliceOptions &forwardSliceOptions) {
SetVector<Operation *> slice;
slice.insert(op);
unsigned currentIndex = 0;
SetVector<Operation *> backwardSlice;
SetVector<Operation *> forwardSlice;
while (currentIndex != slice.size()) {
auto *currentOp = (slice)[currentIndex];
// Compute and insert the backwardSlice starting from currentOp.
backwardSlice.clear();
getBackwardSlice(currentOp, &backwardSlice, backwardSliceOptions);
slice.insert(backwardSlice.begin(), backwardSlice.end());
// Compute and insert the forwardSlice starting from currentOp.
forwardSlice.clear();
getForwardSlice(currentOp, &forwardSlice, forwardSliceOptions);
slice.insert(forwardSlice.begin(), forwardSlice.end());
++currentIndex;
}
return topologicalSort(slice);
}
/// Returns true if `value` (transitively) depends on iteration-carried values
/// of the given `ancestorOp`.
static bool dependsOnCarriedVals(Value value,
ArrayRef<BlockArgument> iterCarriedArgs,
Operation *ancestorOp) {
// Compute the backward slice of the value.
SetVector<Operation *> slice;
BackwardSliceOptions sliceOptions;
sliceOptions.filter = [&](Operation *op) {
return !ancestorOp->isAncestor(op);
};
getBackwardSlice(value, &slice, sliceOptions);
// Check that none of the operands of the operations in the backward slice are
// loop iteration arguments, and neither is the value itself.
SmallPtrSet<Value, 8> iterCarriedValSet(iterCarriedArgs.begin(),
iterCarriedArgs.end());
if (iterCarriedValSet.contains(value))
return true;
for (Operation *op : slice)
for (Value operand : op->getOperands())
if (iterCarriedValSet.contains(operand))
return true;
return false;
}
/// Utility to match a generic reduction given a list of iteration-carried
/// arguments, `iterCarriedArgs` and the position of the potential reduction
/// argument within the list, `redPos`. If a reduction is matched, returns the
/// reduced value and the topologically-sorted list of combiner operations
/// involved in the reduction. Otherwise, returns a null value.
///
/// The matching algorithm relies on the following invariants, which are subject
/// to change:
/// 1. The first combiner operation must be a binary operation with the
/// iteration-carried value and the reduced value as operands.
/// 2. The iteration-carried value and combiner operations must be side
/// effect-free, have single result and a single use.
/// 3. Combiner operations must be immediately nested in the region op
/// performing the reduction.
/// 4. Reduction def-use chain must end in a terminator op that yields the
/// next iteration/output values in the same order as the iteration-carried
/// values in `iterCarriedArgs`.
/// 5. `iterCarriedArgs` must contain all the iteration-carried/output values
/// of the region op performing the reduction.
///
/// This utility is generic enough to detect reductions involving multiple
/// combiner operations (disabled for now) across multiple dialects, including
/// Linalg, Affine and SCF. For the sake of genericity, it does not return
/// specific enum values for the combiner operations since its goal is also
/// matching reductions without pre-defined semantics in core MLIR. It's up to
/// each client to make sense out of the list of combiner operations. It's also
/// up to each client to check for additional invariants on the expected
/// reductions not covered by this generic matching.
Value mlir::matchReduction(ArrayRef<BlockArgument> iterCarriedArgs,
unsigned redPos,
SmallVectorImpl<Operation *> &combinerOps) {
assert(redPos < iterCarriedArgs.size() && "'redPos' is out of bounds");
BlockArgument redCarriedVal = iterCarriedArgs[redPos];
if (!redCarriedVal.hasOneUse())
return nullptr;
// For now, the first combiner op must be a binary op.
Operation *combinerOp = *redCarriedVal.getUsers().begin();
if (combinerOp->getNumOperands() != 2)
return nullptr;
Value reducedVal = combinerOp->getOperand(0) == redCarriedVal
? combinerOp->getOperand(1)
: combinerOp->getOperand(0);
Operation *redRegionOp =
iterCarriedArgs.front().getOwner()->getParent()->getParentOp();
if (dependsOnCarriedVals(reducedVal, iterCarriedArgs, redRegionOp))
return nullptr;
// Traverse the def-use chain starting from the first combiner op until a
// terminator is found. Gather all the combiner ops along the way in
// topological order.
while (!combinerOp->mightHaveTrait<OpTrait::IsTerminator>()) {
if (!isMemoryEffectFree(combinerOp) || combinerOp->getNumResults() != 1 ||
!combinerOp->hasOneUse() || combinerOp->getParentOp() != redRegionOp)
return nullptr;
combinerOps.push_back(combinerOp);
combinerOp = *combinerOp->getUsers().begin();
}
// Limit matching to single combiner op until we can properly test reductions
// involving multiple combiners.
if (combinerOps.size() != 1)
return nullptr;
// Check that the yielded value is in the same position as in
// `iterCarriedArgs`.
Operation *terminatorOp = combinerOp;
if (terminatorOp->getOperand(redPos) != combinerOps.back()->getResults()[0])
return nullptr;
return reducedVal;
}