-
Notifications
You must be signed in to change notification settings - Fork 138
/
Copy pathTopologicalSortUtils.cpp
285 lines (247 loc) · 9.74 KB
/
TopologicalSortUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
//===- TopologicalSortUtils.cpp - Topological sort utilities --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
/// Return `true` if the given operation is ready to be scheduled.
static bool isOpReady(Operation *op, DenseSet<Operation *> &unscheduledOps,
function_ref<bool(Value, Operation *)> isOperandReady) {
// An operation is ready to be scheduled if all its operands are ready. An
// operation is ready if:
const auto isReady = [&](Value value) {
// - the user-provided callback marks it as ready,
if (isOperandReady && isOperandReady(value, op))
return true;
Operation *parent = value.getDefiningOp();
// - it is a block argument,
if (!parent)
return true;
// - or it is not defined by an unscheduled op (and also not nested within
// an unscheduled op).
do {
// Stop traversal when op under examination is reached.
if (parent == op)
return true;
if (unscheduledOps.contains(parent))
return false;
} while ((parent = parent->getParentOp()));
// No unscheduled op found.
return true;
};
// An operation is recursively ready to be scheduled of it and its nested
// operations are ready.
WalkResult readyToSchedule = op->walk([&](Operation *nestedOp) {
return llvm::all_of(nestedOp->getOperands(),
[&](Value operand) { return isReady(operand); })
? WalkResult::advance()
: WalkResult::interrupt();
});
return !readyToSchedule.wasInterrupted();
}
bool mlir::sortTopologically(
Block *block, llvm::iterator_range<Block::iterator> ops,
function_ref<bool(Value, Operation *)> isOperandReady) {
if (ops.empty())
return true;
// The set of operations that have not yet been scheduled.
DenseSet<Operation *> unscheduledOps;
// Mark all operations as unscheduled.
for (Operation &op : ops)
unscheduledOps.insert(&op);
Block::iterator nextScheduledOp = ops.begin();
Block::iterator end = ops.end();
bool allOpsScheduled = true;
while (!unscheduledOps.empty()) {
bool scheduledAtLeastOnce = false;
// Loop over the ops that are not sorted yet, try to find the ones "ready",
// i.e. the ones for which there aren't any operand produced by an op in the
// set, and "schedule" it (move it before the `nextScheduledOp`).
for (Operation &op :
llvm::make_early_inc_range(llvm::make_range(nextScheduledOp, end))) {
if (!isOpReady(&op, unscheduledOps, isOperandReady))
continue;
// Schedule the operation by moving it to the start.
unscheduledOps.erase(&op);
op.moveBefore(block, nextScheduledOp);
scheduledAtLeastOnce = true;
// Move the iterator forward if we schedule the operation at the front.
if (&op == &*nextScheduledOp)
++nextScheduledOp;
}
// If no operations were scheduled, give up and advance the iterator.
if (!scheduledAtLeastOnce) {
allOpsScheduled = false;
unscheduledOps.erase(&*nextScheduledOp);
++nextScheduledOp;
}
}
return allOpsScheduled;
}
bool mlir::sortTopologically(
Block *block, function_ref<bool(Value, Operation *)> isOperandReady) {
if (block->empty())
return true;
if (block->back().hasTrait<OpTrait::IsTerminator>())
return sortTopologically(block, block->without_terminator(),
isOperandReady);
return sortTopologically(block, *block, isOperandReady);
}
bool mlir::computeTopologicalSorting(
MutableArrayRef<Operation *> ops,
function_ref<bool(Value, Operation *)> isOperandReady) {
if (ops.empty())
return true;
// The set of operations that have not yet been scheduled.
DenseSet<Operation *> unscheduledOps;
// Mark all operations as unscheduled.
for (Operation *op : ops)
unscheduledOps.insert(op);
unsigned nextScheduledOp = 0;
bool allOpsScheduled = true;
while (!unscheduledOps.empty()) {
bool scheduledAtLeastOnce = false;
// Loop over the ops that are not sorted yet, try to find the ones "ready",
// i.e. the ones for which there aren't any operand produced by an op in the
// set, and "schedule" it (swap it with the op at `nextScheduledOp`).
for (unsigned i = nextScheduledOp; i < ops.size(); ++i) {
if (!isOpReady(ops[i], unscheduledOps, isOperandReady))
continue;
// Schedule the operation by moving it to the start.
unscheduledOps.erase(ops[i]);
std::swap(ops[i], ops[nextScheduledOp]);
scheduledAtLeastOnce = true;
++nextScheduledOp;
}
// If no operations were scheduled, just schedule the first op and continue.
if (!scheduledAtLeastOnce) {
allOpsScheduled = false;
unscheduledOps.erase(ops[nextScheduledOp++]);
}
}
return allOpsScheduled;
}
SetVector<Block *> mlir::getBlocksSortedByDominance(Region ®ion) {
// For each block that has not been visited yet (i.e. that has no
// predecessors), add it to the list as well as its successors.
SetVector<Block *> blocks;
for (Block &b : region) {
if (blocks.count(&b) == 0) {
llvm::ReversePostOrderTraversal<Block *> traversal(&b);
blocks.insert(traversal.begin(), traversal.end());
}
}
assert(blocks.size() == region.getBlocks().size() &&
"some blocks are not sorted");
return blocks;
}
namespace {
class TopoSortHelper {
public:
explicit TopoSortHelper(const SetVector<Operation *> &toSort)
: toSort(toSort) {}
/// Executes the topological sort of the operations this instance was
/// constructed with. This function will destroy the internal state of the
/// instance.
SetVector<Operation *> sort() {
if (toSort.size() <= 1) {
// Note: Creates a copy on purpose.
return toSort;
}
// First, find the root region to start the traversal through the IR. This
// additionally enriches the internal caches with all relevant ancestor
// regions and blocks.
Region *rootRegion = findCommonAncestorRegion();
assert(rootRegion && "expected all ops to have a common ancestor");
// Sort all elements in `toSort` by traversing the IR in the appropriate
// order.
SetVector<Operation *> result = topoSortRegion(*rootRegion);
assert(result.size() == toSort.size() &&
"expected all operations to be present in the result");
return result;
}
private:
/// Computes the closest common ancestor region of all operations in `toSort`.
Region *findCommonAncestorRegion() {
// Map to count the number of times a region was encountered.
DenseMap<Region *, size_t> regionCounts;
size_t expectedCount = toSort.size();
// Walk the region tree for each operation towards the root and add to the
// region count.
Region *res = nullptr;
for (Operation *op : toSort) {
Region *current = op->getParentRegion();
// Store the block as an ancestor block.
ancestorBlocks.insert(op->getBlock());
while (current) {
// Insert or update the count and compare it.
if (++regionCounts[current] == expectedCount) {
res = current;
break;
}
ancestorBlocks.insert(current->getParentOp()->getBlock());
current = current->getParentRegion();
}
}
auto firstRange = llvm::make_first_range(regionCounts);
ancestorRegions.insert(firstRange.begin(), firstRange.end());
return res;
}
/// Performs the dominance respecting IR walk to collect the topological order
/// of the operation to sort.
SetVector<Operation *> topoSortRegion(Region &rootRegion) {
using StackT = PointerUnion<Region *, Block *, Operation *>;
SetVector<Operation *> result;
// Stack that stores the different IR constructs to traverse.
SmallVector<StackT> stack;
stack.push_back(&rootRegion);
// Traverse the IR in a dominance respecting pre-order walk.
while (!stack.empty()) {
StackT current = stack.pop_back_val();
if (auto *region = dyn_cast<Region *>(current)) {
// A region's blocks need to be traversed in dominance order.
SetVector<Block *> sortedBlocks = getBlocksSortedByDominance(*region);
for (Block *block : llvm::reverse(sortedBlocks)) {
// Only add blocks to the stack that are ancestors of the operations
// to sort.
if (ancestorBlocks.contains(block))
stack.push_back(block);
}
continue;
}
if (auto *block = dyn_cast<Block *>(current)) {
// Add all of the blocks operations to the stack.
for (Operation &op : llvm::reverse(*block))
stack.push_back(&op);
continue;
}
auto *op = cast<Operation *>(current);
if (toSort.contains(op))
result.insert(op);
// Add all the subregions that are ancestors of the operations to sort.
for (Region &subRegion : op->getRegions())
if (ancestorRegions.contains(&subRegion))
stack.push_back(&subRegion);
}
return result;
}
/// Operations to sort.
const SetVector<Operation *> &toSort;
/// Set containing all the ancestor regions of the operations to sort.
DenseSet<Region *> ancestorRegions;
/// Set containing all the ancestor blocks of the operations to sort.
DenseSet<Block *> ancestorBlocks;
};
} // namespace
SetVector<Operation *>
mlir::topologicalSort(const SetVector<Operation *> &toSort) {
return TopoSortHelper(toSort).sort();
}