Skip to content

[MLIR][AMDGPU] Adding Vector transfer_read to load rewrite pattern #131803

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Mar 21, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions mlir/include/mlir/Dialect/AMDGPU/Transforms/Passes.h
Original file line number Diff line number Diff line change
@@ -22,6 +22,7 @@ namespace amdgpu {

#define GEN_PASS_DECL_AMDGPUEMULATEATOMICSPASS
#define GEN_PASS_DECL_AMDGPURESOLVESTRIDEDMETADATAPASS
#define GEN_PASS_DECL_AMDGPUTRANSFERREADTOLOADPASS
#define GEN_PASS_REGISTRATION
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h.inc"

@@ -30,6 +31,9 @@ void populateAmdgpuEmulateAtomicsPatterns(ConversionTarget &target,
Chipset chipset);

void populateAmdgpuResolveStridedMetadataPatterns(RewritePatternSet &patterns);

void populateAmdgpuTransferReadToLoadPatterns(RewritePatternSet &patterns);

} // namespace amdgpu
} // namespace mlir

14 changes: 14 additions & 0 deletions mlir/include/mlir/Dialect/AMDGPU/Transforms/Passes.td
Original file line number Diff line number Diff line change
@@ -51,4 +51,18 @@ def AmdgpuResolveStridedMetadataPass : Pass<"amdgpu-resolve-strided-metadata"> {
];
}

def AmdgpuTransferReadToLoadPass : Pass<"amdgpu-transfer-read-to-load"> {
let summary = "Lower the operations from the vector transfer_read to vector load";
let description = [{
This pass creates a transfer read op lowering. A vector trasfer read op
will be lowered to a combination of vector.load, arith.select and
vector.broadcast.

This pattern will make it possible for masked transfer_read to be lowered
towards buffer load with bounds check, allowing a more optimized global
load accessing pattern compared with existing implementation of
llvm.intr.masked.load on vectors.
}];
let dependentDialects = [];
}
#endif // MLIR_DIALECT_AMDGPU_TRANSFORMS_PASSES_TD_
1 change: 1 addition & 0 deletions mlir/lib/Dialect/AMDGPU/Transforms/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
add_mlir_dialect_library(MLIRAMDGPUTransforms
EmulateAtomics.cpp
ResolveStridedMetadata.cpp
TransferReadToLoad.cpp

ADDITIONAL_HEADER_DIRS
{$MLIR_MAIN_INCLUDE_DIR}/mlir/Dialect/AMDGPU/Transforms
154 changes: 154 additions & 0 deletions mlir/lib/Dialect/AMDGPU/Transforms/TransferReadToLoad.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
//===- TransferReadToLoad.cpp - Lowers masked transfer read to load -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/AMDGPU/Transforms/Passes.h"

#include "mlir/Dialect/AMDGPU/IR/AMDGPUDialect.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/WalkPatternRewriteDriver.h"

namespace mlir::amdgpu {
#define GEN_PASS_DEF_AMDGPUTRANSFERREADTOLOADPASS
#include "mlir/Dialect/AMDGPU/Transforms/Passes.h.inc"
} // namespace mlir::amdgpu

using namespace mlir;
using namespace mlir::amdgpu;

/// This pattern supports lowering of:
/// `vector.transfer_read` to a combination of `vector.load`, `arith.select` and
/// `vector.broadcast` if all of the following hold:
/// - The transfer op is masked.
/// - The memref is in buffer address space.
/// - Stride of most minor memref dimension must be 1.
/// - Out-of-bounds masking is not required.
/// - If the memref's element type is a vector type then it coincides with the
/// result type.
/// - The permutation map doesn't perform permutation (broadcasting is allowed).
/// Note: those conditions mostly come from TransferReadToVectorLoadLowering
/// pass.
static LogicalResult transferPreconditions(
PatternRewriter &rewriter, VectorTransferOpInterface xferOp,
bool &requiresBroadcasting, VectorType &unbroadcastedVectorType) {
if (!xferOp.getMask())
return rewriter.notifyMatchFailure(xferOp, "Only support masked transfer");

// Permutations are handled by VectorToSCF or
// populateVectorTransferPermutationMapLoweringPatterns.
// We let the 0-d corner case pass-through as it is supported.
SmallVector<unsigned> broadcastedDims;
if (!xferOp.getPermutationMap().isMinorIdentityWithBroadcasting(
&broadcastedDims))
return rewriter.notifyMatchFailure(xferOp, "not minor identity + bcast");

auto memRefType = dyn_cast<MemRefType>(xferOp.getShapedType());
if (!memRefType)
return rewriter.notifyMatchFailure(xferOp, "not a memref source");

Attribute addrSpace = memRefType.getMemorySpace();
if (!addrSpace || !dyn_cast<amdgpu::AddressSpaceAttr>(addrSpace))
return rewriter.notifyMatchFailure(xferOp, "no address space");

if (dyn_cast<amdgpu::AddressSpaceAttr>(addrSpace).getValue() !=
amdgpu::AddressSpace::FatRawBuffer)
return rewriter.notifyMatchFailure(xferOp, "not in buffer address space");

// Non-unit strides are handled by VectorToSCF.
if (!memRefType.isLastDimUnitStride())
return rewriter.notifyMatchFailure(xferOp, "!= 1 stride needs VectorToSCF");

// If there is broadcasting involved then we first load the unbroadcasted
// vector, and then broadcast it with `vector.broadcast`.
ArrayRef<int64_t> vectorShape = xferOp.getVectorType().getShape();
SmallVector<int64_t> unbroadcastedVectorShape(vectorShape);
for (unsigned i : broadcastedDims)
unbroadcastedVectorShape[i] = 1;
unbroadcastedVectorType = xferOp.getVectorType().cloneWith(
unbroadcastedVectorShape, xferOp.getVectorType().getElementType());
requiresBroadcasting = !broadcastedDims.empty();

// `vector.load` supports vector types as memref's elements only when the
// resulting vector type is the same as the element type.
auto memrefElTy = memRefType.getElementType();
if (isa<VectorType>(memrefElTy) && memrefElTy != unbroadcastedVectorType)
return rewriter.notifyMatchFailure(xferOp, "incompatible element type");

// Otherwise, element types of the memref and the vector must match.
if (!isa<VectorType>(memrefElTy) &&
memrefElTy != xferOp.getVectorType().getElementType())
return rewriter.notifyMatchFailure(xferOp, "non-matching element type");

// Out-of-bounds dims are handled by MaterializeTransferMask.
if (xferOp.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(xferOp, "out-of-bounds needs mask");

if (xferOp.getVectorType().getRank() != 1)
// vector.maskedload operates on 1-D vectors.
return rewriter.notifyMatchFailure(
xferOp, "vector type is not rank 1, can't create masked load, needs "
"VectorToSCF");

return success();
}

namespace {

struct TransferReadLowering final : OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern::OpRewritePattern;

LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override {

bool requiresBroadcasting = false;
VectorType unbroadcastedVectorType;
if (failed(transferPreconditions(rewriter, readOp, requiresBroadcasting,
unbroadcastedVectorType))) {
return failure();
}

Location loc = readOp.getLoc();
Value fill = rewriter.create<vector::SplatOp>(loc, unbroadcastedVectorType,
readOp.getPadding());
Value load = rewriter.create<vector::LoadOp>(
loc, unbroadcastedVectorType, readOp.getSource(), readOp.getIndices());
Value res = rewriter.create<arith::SelectOp>(loc, unbroadcastedVectorType,
readOp.getMask(), load, fill);

// Insert a broadcasting op if required.
if (requiresBroadcasting) {
res = rewriter.create<vector::BroadcastOp>(loc, readOp.getVectorType(),
res);
}

rewriter.replaceOp(readOp, res);

return success();
}
};

} // namespace

void mlir::amdgpu::populateAmdgpuTransferReadToLoadPatterns(
RewritePatternSet &patterns) {
patterns.add<TransferReadLowering>(patterns.getContext());
}

struct AmdgpuTransferReadToLoadPass final
: amdgpu::impl::AmdgpuTransferReadToLoadPassBase<
AmdgpuTransferReadToLoadPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populateAmdgpuTransferReadToLoadPatterns(patterns);
walkAndApplyPatterns(getOperation(), std::move(patterns));
}
};
86 changes: 86 additions & 0 deletions mlir/test/Dialect/AMDGPU/transfer-read-to-load.mlir
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
// RUN: mlir-opt %s --amdgpu-transfer-read-to-load --split-input-file | FileCheck %s

// CHECK-LABEL: func @transfer_to_maskedload_fatrawbuffer(
// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>
// CHECK-SAME: %[[ARG1:.*]]: index
// CHECK-SAME: %[[ARG2:.*]]: vector<4xi1>
func.func @transfer_to_maskedload_fatrawbuffer(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, %idx : index, %mask : vector<4xi1>) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf32>
return %res : vector<4xf32>
}
// CHECK: %[[CST:.*]] = arith.constant 0.0
// CHECK: %[[SPLAT:.*]] = vector.splat %[[CST]]
// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[SPLAT]]
// CHECK: return %[[SELECT]] : vector<4xf32>

// -----

// CHECK-LABEL: func @transfer_to_maskedload_regular(
// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32>
// CHECK-SAME: %[[ARG1:.*]]: index
// CHECK-SAME: %[[ARG2:.*]]: vector<4xi1>
func.func @transfer_to_maskedload_regular(%mem : memref<8x8xf32>, %idx : index, %mask : vector<4xi1>) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
return %res : vector<4xf32>
}
// CHECK: %[[CST:.*]] = arith.constant 0.0
// CHECK: %[[RES:.*]] = vector.transfer_read %arg0[%arg1, %arg1], %[[CST]], %arg2 {in_bounds = [true]} : memref<8x8xf32>, vector<4xf32>
// CHECK: return %[[RES]] : vector<4xf32>

// -----

// CHECK-LABEL: func @transfer_to_maskedload_addrspace(
// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #gpu.address_space<workgroup>>
// CHECK-SAME: %[[ARG1:.*]]: index
// CHECK-SAME: %[[ARG2:.*]]: vector<4xi1>
func.func @transfer_to_maskedload_addrspace(%mem : memref<8x8xf32, #gpu.address_space<workgroup>>, %idx : index, %mask : vector<4xi1>) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask {in_bounds = [true]} : memref<8x8xf32, #gpu.address_space<workgroup>>, vector<4xf32>
return %res : vector<4xf32>
}
// CHECK: %[[CST:.*]] = arith.constant 0.0
// CHECK: %[[RES:.*]] = vector.transfer_read %arg0[%arg1, %arg1], %[[CST]], %arg2 {in_bounds = [true]} : memref<8x8xf32, #gpu.address_space<workgroup>>, vector<4xf32>
// CHECK: return %[[RES]] : vector<4xf32>

// -----

// CHECK-LABEL: func @transfer_broadcasting(
// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>
// CHECK-SAME: %[[ARG1:.*]]: index
// CHECK-SAME: %[[ARG2:.*]]: vector<1xi1>
#broadcast_1d = affine_map<(d0, d1) -> (0)>
func.func @transfer_broadcasting(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, %idx : index, %mask : vector<1xi1>) -> vector<4xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask
{in_bounds = [true], permutation_map = #broadcast_1d}
: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<4xf32>
return %res : vector<4xf32>
}
// CHECK: %[[CST:.*]] = arith.constant 0.0
// CHECK: %[[SPLAT:.*]] = vector.splat %[[CST]]
// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[SPLAT]]
// CHECK: %[[BROADCAST:.*]] = vector.broadcast %[[SELECT]] : vector<1xf32> to vector<4xf32>
// CHECK: return %[[BROADCAST]] : vector<4xf32>

// -----

// CHECK-LABEL: func @transfer_scalar(
// CHECK-SAME: %[[ARG0:.*]]: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>
// CHECK-SAME: %[[ARG1:.*]]: index
// CHECK-SAME: %[[ARG2:.*]]: vector<1xi1>
func.func @transfer_scalar(%mem : memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, %idx : index, %mask : vector<1xi1>) -> vector<1xf32> {
%cf0 = arith.constant 0.0 : f32
%res = vector.transfer_read %mem[%idx, %idx], %cf0, %mask
{in_bounds = [true]}
: memref<8x8xf32, #amdgpu.address_space<fat_raw_buffer>>, vector<1xf32>
return %res : vector<1xf32>
}
// CHECK: %[[CST:.*]] = arith.constant 0.0
// CHECK: %[[SPLAT:.*]] = vector.splat %[[CST]]
// CHECK: %[[LOAD:.*]] = vector.load %arg0[%arg1, %arg1]
// CHECK: %[[SELECT:.*]] = arith.select %arg2, %[[LOAD]], %[[SPLAT]]
// CHECK: return %[[SELECT]] : vector<1xf32>