-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathfv_mol.py
203 lines (145 loc) · 5.56 KB
/
fv_mol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import numpy as np
import matplotlib.pyplot as plt
class FVGrid(object):
def __init__(self, nx, ng, xmin=0.0, xmax=1.0):
self.xmin = xmin
self.xmax = xmax
self.ng = ng
self.nx = nx
# python is zero-based. Make easy intergers to know where the
# real data lives
self.ilo = ng
self.ihi = ng+nx-1
# physical coords -- cell-centered, left and right edges
self.dx = (xmax - xmin)/(nx)
self.x = xmin + (np.arange(nx+2*ng)-ng+0.5)*self.dx
self.xl = xmin + (np.arange(nx+2*ng)-ng)*self.dx
self.xr = xmin + (np.arange(nx+2*ng)-ng+1.0)*self.dx
# storage for the solution
self.a = self.scratch_array()
self.ainit = self.scratch_array()
def period(self, u):
""" return the period for advection with velocity u """
return (self.xmax - self.xmin)/u
def scratch_array(self):
""" return a scratch array dimensioned for our grid """
return np.zeros((self.nx+2*self.ng), dtype=np.float64)
def fill_BCs(self, atmp):
""" fill all single ghostcell with periodic boundary conditions """
# left boundary
for n in range(self.ng):
atmp[self.ilo-1-n] = atmp[self.ihi-n]
# right boundary
for n in range(self.ng):
atmp[self.ihi+1+n] = atmp[self.ilo+n]
def init_cond(self, ic):
if ic == "tophat":
self.a[np.logical_and(self.x >= 0.333, self.x <= 0.666)] = 1.0
elif ic == "sine":
self.a[:] = np.sin(2.0*np.pi*self.x/(self.xmax-self.xmin))
elif ic == "gaussian":
self.a[:] = 1.0 + np.exp(-60.0*(self.x - 0.5)**2)
self.ainit[:] = self.a[:]
def norm(self, e):
""" return the norm of quantity e which lives on the grid """
if not len(e) == (2*self.ng + self.nx):
return None
return np.sqrt(self.dx*np.sum(e[self.ilo:self.ihi+1]**2))
def flux_update(gr, u, a, limit=False):
if not limit:
# slope
da = gr.scratch_array()
da[gr.ilo-1:gr.ihi+2] = 0.5*(a[gr.ilo:gr.ihi+3] - a[gr.ilo-2:gr.ihi+1])
else:
# MC slope
ib = gr.ilo-1
ie = gr.ihi+1
dc = gr.scratch_array()
dl = gr.scratch_array()
dr = gr.scratch_array()
dc[ib:ie+1] = 0.5*(a[ib+1:ie+2] - a[ib-1:ie ])
dl[ib:ie+1] = a[ib+1:ie+2] - a[ib :ie+1]
dr[ib:ie+1] = a[ib :ie+1] - a[ib-1:ie ]
# these where's do a minmod()
d1 = 2.0*np.where(np.fabs(dl) < np.fabs(dr), dl, dr)
d2 = np.where(np.fabs(dc) < np.fabs(d1), dc, d1)
da = np.where(dl*dr > 0.0, d2, 0.0)
# upwinding means that we take the left state always
aint = gr.scratch_array()
aint[gr.ilo:gr.ihi+2] = a[gr.ilo-1:gr.ihi+1] + 0.5*da[gr.ilo-1:gr.ihi+1]
flux_diff = gr.scratch_array()
flux_diff[gr.ilo:gr.ihi+1] = u*(aint[gr.ilo:gr.ihi+1] - aint[gr.ilo+1:gr.ihi+2])/gr.dx
return flux_diff
def mol_update(C, u, nx, num_periods=1, init_cond="gaussian", limit=False):
# create a grid
gr = FVGrid(nx, ng=2)
tmax = num_periods*gr.period(u)
# setup initial conditions
gr.init_cond(init_cond)
# compute the timestep
dt = C*gr.dx/u
t = 0.0
while t < tmax:
if t + dt > tmax:
dt = tmax - t
# second-order RK integration
gr.fill_BCs(gr.a)
k1 = flux_update(gr, u, gr.a, limit=limit)
atmp = gr.scratch_array()
atmp[:] = gr.a[:] + 0.5*dt*k1[:]
gr.fill_BCs(atmp)
k2 = flux_update(gr, u, atmp, limit=limit)
gr.a[:] += dt*k2[:]
t += dt
return gr
if __name__ == "__main__":
C = 0.8
u = 1.0
nx = 64
# without limiting
gr = mol_update(C, u, nx, num_periods=1.0, init_cond="gaussian")
plt.clf()
plt.plot(gr.x, gr.a)
plt.plot(gr.x, gr.ainit, ls=":")
plt.savefig("advection_gaussian.png", dpi=150)
gr = mol_update(C, u, nx, num_periods=1.0, init_cond="tophat")
plt.clf()
plt.plot(gr.x, gr.a)
plt.plot(gr.x, gr.ainit, ls=":")
plt.savefig("advection_tophat.png", dpi=150)
# with limiting
gr = mol_update(C, u, nx, num_periods=1.0, init_cond="gaussian", limit=True)
plt.clf()
plt.plot(gr.x, gr.a)
plt.plot(gr.x, gr.ainit, ls=":")
plt.savefig("advection_gaussian_limit.png", dpi=150)
gr = mol_update(C, u, nx, num_periods=1.0, init_cond="tophat", limit=True)
plt.clf()
plt.plot(gr.x, gr.a)
plt.plot(gr.x, gr.ainit, ls=":")
plt.savefig("advection_tophat_limit.png", dpi=150)
# convergence
plt.clf()
Ns = [32, 64, 128, 256, 512]
err_gauss = []
err_nolimit = []
for nx in Ns:
gr = mol_update(C, u, nx, num_periods=1.0, init_cond="gaussian", limit=True)
gr_nolimit = mol_update(C, u, nx, num_periods=1.0, init_cond="gaussian", limit=False)
err_gauss.append(gr.norm(gr.a - gr.ainit))
err_nolimit.append(gr.norm(gr_nolimit.a - gr_nolimit.ainit))
print(nx, err_gauss[-1], err_nolimit[-1])
plt.scatter(Ns, err_gauss, label="gaussian")
plt.scatter(Ns, err_nolimit, label="gaussian (no limit)")
# plot a trend line
N = np.asarray(Ns)
err = np.asarray(err_gauss)
plt.plot(N, err[-1]*(N[-1]/N), ls=":", color="0.5", label=r"$\mathcal{O}(\Delta x)$")
plt.plot(N, err[-1]*(N[-1]/N)**2, ls="-", color="0.5", label=r"$\mathcal{O}(\Delta x^2)$")
ax = plt.gca()
ax.set_xscale("log")
ax.set_yscale("log")
plt.legend(frameon=False, fontsize="small", loc=3)
plt.xlim(10, 1000)
plt.ylim(1.e-4, 0.1)
plt.savefig("convergence_limited.png", dpi=150)