Skip to content

robinmattern/AIDocs_testR-master

Repository files navigation

formR and AIDocs

Introduction

The grand idea is to create instructions for building an AI App from soup to nuts. It's a hands on approach using inexpensive, lasting technologies.

  1. formR Flow and FRDocs
    We begin, before the age of AI, with simple guides and tools, such as FRTools and gitR, to do the following listed below. Documentation and a git repository of sample code and scripts are provided here.
    1. Build a Development Workstation
    2. Build a Web Server in the Cloud
    3. Write an Web Application
      • HTML and CSS only
      • JavaScript Only
      • MySQL and Rest APIs
      • JavaScript Component Framework
  2. AI.Docs.4u
    With the age of AI upon us, we continue building applications with the help of AI. Here are our three main development projects.
    1. AI.viewR.4u - Build a simple chat app using local AI models to query local data, all on an inexpensive Mac Mini with an M4 AI Processor
    2. AI.testR.4u - Test which models performs best
    3. AI.codeR.4u - Use AI to build, deploy and enhance Agentic workflows

AIDocs AI.testR.4u Installation Guide

A. Install or Update FRTools

Only do this once from a terminal window in a new Repos folder. It puts a few commands, e.g. frtools, frt, rdir, gitr, etc. into the system path so, you'll need to re-open the terminal window.

  1. Goto FRTools GitHub Repository. Scroll down to the README and copy the Option 2 line of code

    https://github.com/robinmattern/AIDocs_testR-master)
  2. Open a terminal window, cd into the Repos folder, paste the code and press enter:

    cd /Users/Shared/Repos
    curl -s https://raw.githubusercontent.com/robinmattern/FRTools_prod2-master/master/._2/ZIPs/set-repos | bash
    Getting script: set-repos-dir.sh.
    
    The current version of "7zip" is 7-Zip v24.09.
    curl -s "https://raw.githubusercontent.com/robinmattern/FRTools_prod2-master/master/.  _2/ZIPs/set-repos-dir.zip"  -o set-repos-dir.zip
    
    Unzipping, set-repos-dir.zip, with 7zip --
        Extracting archive: set-repos-dir.zip
        Folders: 4
        Files: 10
    
    Password:
    
    The FormR install scripts have been downloaded into your Repos folder.
    
    //  ------  End of Install  ----------------------------------------------------------------------------- \  
    
    You can now run any of these install commands from your Repos folder:
    
        bash install frtools       # first, then login again, or run:
        source ~/.zshrc             # then run, frt, to check it.
    
        bash install anyllm        # then run, anyllm, to check it.
        bash install aidocs demo1  # then run, aidocs, to check it.
        bash install aidocs testr  # then run, aidocs, to check it.
    
    * Note: You must install FRTools before any other projects.  After that,
    you can clone or create your own projects folder with:
    
        bash frt clone {RepoName} '' {CloneDir} {Branch} {Account}
    
  3. Run the command to install FRTools

    bash install frtools
    Cloning into 'FRTools'...
    remote: Enumerating objects: 2045, done.
    remote: Counting objects: 100% (278/278), done.
    remote: Compressing objects: 100% (168/168), done.
    remote: Total 2045 (delta 197), reused 188 (delta 110), pack-reused 1767 (from 1)
    Receiving objects: 100% (2045/2045), 799.50 KiB | 8.60 MiB/s, done.
    Resolving deltas: 100% (1349/1349), done.
    Password:
    
      Won't create BinDir. It already exists: "/Users/Shared/._0/bin"
      Created script in: /Users/Shared/._0/bin/jpt      for "/Users/Shared/Repos/FRTools/._2/JPTs/JPT30_Main0.sh"
      Created script in: /Users/Shared/._0/bin/rss      for "/Users/Shared/Repos/FRTools/._2/JPTs/RSS/RSS01_Main1.sh"
      Created script in: /Users/Shared/._0/bin/rss2     for "/Users/Shared/Repos/FRTools/._2/JPTs/RSS/RSS02_Main1.sh"
      Created script in: /Users/Shared/._0/bin/rdir     for "/Users/Shared/Repos/FRTools/._2/JPTs/RSS/fileList/RSS21_FileList.sh"
      Created script in: /Users/Shared/._0/bin/dirlist  for "/Users/Shared/Repos/FRTools/._2/JPTs/RSS/dirList/RSS22_DirList.sh"
      Created script in: /Users/Shared/._0/bin/info     for "/Users/Shared/Repos/FRTools/._2/JPTs/RSS/infoR/RSS23_Info.sh"
      Created script in: /Users/Shared/._0/bin/frt      for "/Users/Shared/Repos/FRTools/._2/FRTs/FRT40_Main0.sh"
      Created script in: /Users/Shared/._0/bin/keys     for "/Users/Shared/Repos/FRTools/._2/FRTs/keyS/FRT41_keyS1.sh"
      Created script in: /Users/Shared/._0/bin/gitr     for "/Users/Shared/Repos/FRTools/._2/FRTs/gitR/FRT42_gitR2.sh"
      Created script in: /Users/Shared/._0/bin/gitr1    for "/Users/Shared/Repos/FRTools/._2/FRTs/gitR/FRT42_gitR1.sh"
      Created script in: /Users/Shared/._0/bin/gitr2    for "/Users/Shared/Repos/FRTools/._2/FRTs/gitR/FRT42_gitR2.sh"
      Created script in: /Users/Shared/._0/bin/netr     for "/Users/Shared/Repos/FRTools/._2/FRTs/netR/FRT44_netR1.sh"
      Created script in: /Users/Shared/._0/bin/dokr     for "/Users/Shared/Repos/FRTools/._2/FRTs/dokR/FRT45_dokR1.sh"
      Created script in: /Users/Shared/._0/bin/docr     for "/Users/Shared/Repos/FRTools/._2/FRTs/FRT46_docR0.sh"
    
      THE_SERVER is: rm231-os23_Robins-Mac-mini (10.0.0.37)
    
    * The path, '/Users/Shared/._0/bin', is already in the User's ~/.zshrc file.
    
        FRTools are installed.
    
      //  ------  End of Install  ----------------------------------------------------------------------------- \
    
      * You may need to run, source /Users/robin/.zshrc, or login again.
    
        Run, bash install, again to see other repos to install
    
  4. Re-open the terminal window to login again, and then test the frtools help or frt commmand.

    frtools help
      Useful FRTools  (u1.09)               (May 16, 2025 9:50a)
      ------------------------------------  ---------------------------------
         FRT [Help]
    
         FRT Path Set [-doit] [-user]        Enable formR Tools to run anywhere
         FRT Path Set [-doit] [-user]        Enable formR Tools to run anywhere
    
         FRT keyS [ Help ]                   Manage SSH Key files
             keyS List SSH Hosts Keys
    
         FRT gitR [ help ]                   Manage Git Local and Remote Repos
             gitR Init
             gitR Clone
             gitR Pull
    
         FRT netR [ help ]                   Manage Git Local and Remote Repos
             netR List
             netR Clone
    
         FRT porTs show                      Manage Ports
             show ports
             porT kill {Port}
             kill port {Port}
    
             JPT {Cmd}
             JPT RSS {Cmd}
                 RSS Dir (RDir)
                 RSS DirList (DirList)
    
        FRT New Repo                         Create a new local repo folder
        FRT Clone                            Clone a remote Github repo
        FRT Install                          Run ./set-frtools.sh
            Install [ALTools] [-doit]        Install ALTools
                    [ALTools] [-doit] [-u]   Update ALTools
                    [AIDocs] [-doit]         Install AIDocs
        FRT Copy    {FromBra} {File} {ToBra} Copy file from to a branch
    
        FRT Update [-doit]                   Update [ {FRTools} ]
    
      Notes: Only 3 lowercase letters are needed for each command, separated by spaces
             One or more command options follow. Help for the command is dispayed if no options are given
             The options, debug, doit and quietly, can follow anywhere after the command
    
  5. Update the latest version of FRTools. This can be done at anytime.

    frtools version
       formR Tools: u1.09   (May 16, 2025 9:50a)
    
    frt update -d
      RepoDir is: /Users/Shared/Repos/FRTools, branch: master
    
      About to update repo, 'origin', for branch, 'master', from remote, 'robinmattern/FRTools_prod2-master'.
    remote: Enumerating objects: 9, done.
    remote: Counting objects: 100% (9/9), done.
    remote: Compressing objects: 100% (2/2), done.
    remote: Total 5 (delta 3), reused 5 (delta 3), pack-reused 0 (from 0)
    Unpacking objects: 100% (5/5), 544 bytes | 49.00 KiB/s, done.
    From https://github.com/robinmattern/FRTools_prod2-master
       30764d1..3dbbb9a  master     -> origin/master
      HEAD is now at 3dbbb9a .(50512.01_Add frtools script
    Password:
    
      Updated repo, 'origin', for branch, 'master', from remote, 'robinmattern/FRTools_prod2-master'.    
    
B. Install or Update AIDocs testR

Install the AI.testR.4u app from a terminal window in a Repos folder.

  1. Install the testR version of AIDocs.

    bash install aidocs testr
      git clone "https://github.com/robinmattern/AIDocs_testR-master.git" AIDocs_testR
    - This could take a while. You may have to enter your password to set .sh permissions.
    
      After changing into the project folder: cd AIDocs_testR
          and setting your PC_CODE in the script, run-tests.sh
    
      cd AIDocs_testR/._2
    npm warn deprecated @aws-sdk/protocol-http@3.374.0: This package has moved to @smithy/protocol-http
    npm warn deprecated @aws-sdk/signature-v4@3.374.0: This package has moved to @smithy/signature-v4
    npm warn deprecated node-domexception@1.0.0: Use your platform's native DOMException instead
      cd AIDocs_testR/client1
      cd AIDocs_testR/server1
      npm install
    npm warn deprecated node-domexception@1.0.0: Use your platform's native DOMException instead
    
        added 165 packages, and audited 166 packages in 4s
    
        67 packages are looking for funding
          run `npm fund` for details
    
        1 low severity vulnerability
    
        To address all issues (including breaking changes), run:
          npm audit fix --force
    
        Run `npm audit` for details.
    
        Copying .env file from ./AIDocs_testR/client1/c16_aidocs-review-app/utils/FRTs/_env_local-local.txt  to  .env
        Copying .env file from ./AIDocs_testR/server/s01_search-app/.env_example  to  .env
        Copying .env file from ./AIDocs_testR/server1/s11_search-mod-app/.env_example  to  .env
        Copying .env file from ./AIDocs_testR/server1/s12_search-web-app/.env_example  to  .env
        Copying .env file from ./AIDocs_testR/server1/s13_search-rag-app/.env_example  to  .env
        Copying .env file from ./AIDocs_testR/server1/s14_scoring-app/.env_example  to  .env
    
    Password:
        Copied:  /Users/Shared/._0/bin/ait
        Copied:  /Users/Shared/._0/bin/aitestr
        Copied:  /Users/Shared/._0/bin/ai.testr.4u
        Version: u2.10.138`50516.1001
    
    //  ------  End of Install  ----------------------------------------------------------------------------- \n
    
      After changing into the project folder: cd AIDocs_testR
        and setting your PC_CODE in the script, run-tests.sh,
        you can run any of these AI model testr commands, for example:
    
        ai.testr.4u help
        aitestr s11 t011
        ait chroma start
        ait import s13
        ait s13 t011
    
      Run, bash install, again to see other repos to install
    
  2. Update the latest version of the AIDocs testR app.

    cd AIDocs_testR
    aitestr version
      AIDocs - AI.testR.4u  u2.10.138  (May 18, 2025  2:48p)
    
    frt gitr update -d
      RepoDir is: /Users/Shared/Repos/AIDocs_testR/, branch: master
    
      About to update repo, 'origin', for branch, 'master', from remote, 'robinmattern/AIDocs_testR-master'.
    
    * The branch, 'master', has 11 uncommitted files, that will be stashed.
        1.             ?   2025-05-06 10:47  data/AI.testR.4u/settings/hardware-settings_h2q6nv.txt
        2.             ?   2025-05-06 10:06  data/AI.testR.4u/settings/hardware-settings_mymac.txt
        3.             ?   2025-05-06 09:49  data/AI.testR.4u/settings/hardware-settings_rm231p.txt
        4.             ?   2025-05-06 10:47  docs/a11_search-app/a11-saved-stats/a11_Stats-h2q6nv_u2.08.csv
        5.             ?   2025-05-06 10:15  docs/a11_search-app/a11-saved-stats/a11_Stats-mymac_u2.08.csv
        6.             ?   2025-05-06 09:49  docs/a11_search-app/a11-saved-stats/a11_Stats-rm231p_u2.08.csv
        7.             ?   2025-05-06 10:25  docs/a14_grading-app/a14-saved-stats/a14_Stats-mymac_u2.08.csv
        8.             ?   2025-05-06 10:47  server1/s11_search-app/.env_s11-template_h2q6nv.txt
        9.             ?   2025-05-06 10:06  server1/s11_search-app/.env_s11-template_mymac.txt
       10.             ?   2025-05-06 09:49  server1/s11_search-app/.env_s11-template_rm231p.txt
       11.             M   2025-05-06 11:36  server1/s13_search-rag-app/s13_model-tests.txt
      No local changes to save
      HEAD is now at ea344ed .(50505.13_More fixes
    Password:
    
      Updated repo, 'origin', for branch, 'master', from remote, 'robinmattern/AIDocs_testR-master'.
    
C. Get Help
  1. Run the command, AI.testR.4u Help, from any location.

    AI.testR.4u Help
    Usage: AI.testR.4u ...       Ver: u2.11.141  (May 31, 2025  5:15PM)
    
      {App} {Test}       to run a test
      {App} gen {Group}  to generate an .env template for a test model group
      {App} list         to list all tests to run
      help pc_code       to save computer hardware specs
      import {App}       to import a collection of docs
      chroma start       to start the Chroma Vector DB
      sql {table}        to query a table in the Chroma Vector DB
    
    Where:
      {App}              is an App Id for one type of test app, e.g. s11.
      {Test}             is one Test id, e.g. t011
      {Group}            is a Group Id for one set of model tests, e.g. t010
    
    For example:
      AI.testR.4u s11 help
      AI.testR.4u s11 t011
      AI.testR.4u import s13a
      AI.testR.4u chroma collections
      AI.testR.4u s13g t041
      AI.testR.4u example s13
    
  2. Get help for a specific application, e.g. aitestr s13 help from the app folder: s13_search-rag-app.

    cd AIDocs_testR/server1/s13_*
    aitestr s13 help
      Run any of the following tests for app: s13:
        aitestr  s13  t041  # A single test for one sysprompt (created from .env_s13-template_{HWCD}.txt and s13_model-tests.txt).
        aitestr  s13  t040  # A group test for one model (copied from .env_s13_t040_qwen2;0.5b_4,6-tests.txt)
    
      No group test are defined. Define them for three models with:
        aitestr  gen  s13  all
    
      For the s13_search-rag-app, you can give a collection name, s13a, s13b, etc
        s13_apple-ipad
        s13a_apple-pages
        s13b_apple-pdfs
        s13c_rag-architecture-doc
        s13d_greenbook-pdf
        s13e_greenbook-txt
        s13f_constitution-docs
        s13g_eo-docs
        s13h_sourcedocs
    
      For example:
        aitestr  s13b  t041
        aitestr  s13b  current
    
      For these to work you will need to import them into to ChromaDB Vector DB first:
        aitestr  import s13b
        aitestr  import s13x_other-docs
    
      You can also query the ChromaDB Vector DB. See ait sql help:
    
  3. Get help with the Chroma Vector database from any location.

    ait chroma
      Usage: aitestr chroma {Command} [{IDs}] [{Format}]
    
        Command     IDs    Format     Description
        ----------- -----  ---------  -------------------------------------------------
        start                         Start chromaDB if it is not running
        stop                          Stop chromaDB if it is running
        check                         Check if chromaDB is running
    
        counts                        List record counts for all tables
        tables                        Show schema for all tables
    
        collections                   List collections.name for all apps, e.g. s13c
    
        documents                     List all documents
        documents  {id}               List documents for one embedding_id
        documents  {id1,id2,id2}      List documents for multiple embedding_ids
        documents  {id1..id2}         List documents between two embedding_ids
        documents  {a##}              List documents for one app, aka collection_name
        documents  <ids> [json|line]  Show documents for <ids> in json or line format
    
        chunks                        List all embeddings
        chunks     <ids>              List embeddings for <ids>
    
        metadata                      List three metadata columns for all embeddings
        metadata   <ids>              List three metadata columns for <ids> embeddings
        metadata   <ids> [json|line]  Show chroma:document metadata, aka embedded_text
    
        embeddings                    List all embeddings with only document_paths
        embeddings {id}               Show embedding data for one embedding_id
        queue                         List metatdata in json format for ??
    
D. Set Hardware Specs
  1. You will need to save your computer's hardware specs. To get help for that, run this command, ait help pc_code, from the main AIDocs_testR directory.

    cd AIDocs_testR
    ait help pc_code
    Before testing model performance on your computer, we need to determine the hardware specs
    for your PC. To do that, just run any test, e.g. ait s11 t011.  Your PC's specs will be
    saved along with a unique 6 digit hexidecimal PC_CODE.  If you'd like to create a more user
    friendly PC_CODE, you can assign a 6 digit code on line 36 of this file, run-tests.sh.
    and run the test again.
    
  1. Let's open VSCode and look at the run-tests.sh script in the AIDocs-test1 folder.

    code AIDocs_testR-master.code-workspace
  2. Open the main script, run-test.sh. Save hardware specs for a user assigned PC_CODE.

    Open run-test.sh. Initially the PC_CODE is set to nothing.
  3. Set the DRY_RUN parameter to "1" and SCORING to "0" to generate a PC_CODE without running a model.

    Edit line 28 export DRYRUN="1"
    Edit line 29 export SCORING="0"
  4. Open the VSCode Terminal, and run the first test, t011 for the first model app, s11.

    ait s11 t011
    50518.1555.22  s11           Running test: t011
    
    * Creating app .env template file for PC_Code: ....
      Creating hardware file for ....
      Saving hardware info for h2q6nv into the template file: '.env_s11-template_h2q6nv.txt'
    
    50518.1555.23  s11  t011     Running search_u2.10.mjs 
    
    50518.1555.23  s11  t011.01  Starting llama3.2:3b          GKN0-MODP  MOD    4000  0.3
    50518.1555.23                Finished llama3.2:3b       in NaN secs, NaN tps
    
    View how the PC_CODE has been set to 6 digits of the embedded hardware serial number.
  5. You can set the PC_CODE to a more readable code to uniquely identify your PC, e.g. bt001p.

    Change line 31   export PC_CODE="bt001p"
    • PC_CODE: by setting it, the Hardware specs of your PC will be associated with this code.
  6. Run the model test dry run again.

    ait s11 t011
    50518.1609.20  s11           Running test: t011
    
    * Creating app .env template file for PC_Code: 'bt001p'..
      Creating hardware file for 'bt001p'..
      Saving hardware info for bt001p into the template file: '.env_s11-template_bt001p.txt'
    
    50518.1609.21  s11  t011     Running search_u2.10.mjs 
    
    50518.1609.21  s11  t011.01  Starting llama3.2:3b          GKN0-MODP  MOD    4000  0.3
    50518.1609.21                Finished llama3.2:3b       in NaN secs, NaN tps
    
    You can see that a template file, .env_s11-template_bt001p.txt has been created for the PC_CODE. This file is used to generate all the model run parameters in each app folder's .env file. You can delete the .envtemplate file for the generated PC_CODE: h2q6nv
E. Setup the Ollama and Chroma Database
  1. Start the ChromaDB for the app, s13_search-rag-app.

    cd server1/s13_*
    ait chroma start
  2. To import, i.e. vectorize, a document into the Lance DB

    ait chroma import s13_apple-ipad-txt
  3. Make sure the following Ollama models are downloaded to your PC

    • qwen2:0.5b 352 MB
    • qwen2:1.5b 934 MB
    • gemma2:2b 1.6 GB
    • granite3.1-dense:2b 1.6 GB
    • llama3.2:3b 2.0 GB
    • phi3 2.2 GB

    if not, in the VSCode terminal, run ollama pull {modelname}

    ollama pull qwen2:0.5b
F. Run three sample models
  1. To set the parameters back for a real model test run, set the following:

    Change these parameters
    Comment line 22 # export LOGGER="log"
    • Commenting-out a parameter disables it.
      Normally multiple sections are displayed when the model is run -- for the searched documents, the results and run statistics.
      Setting LOGGER to log hides those sections, just showing a two line summary for each nodel test run.
    Un-comment line 24   export LOGGER="log,inputs"
    • LOGGER: by setting this log display parameter to log,inputs, we'll see all the input variables before the next model run or series of model test runs.
    Change line 28   export DRY_RUN="0";
    • DRYRUN by turning it on, the model test run invoke the ollama model.
    Change line 29   export SCORING="1";
    • SCORING by turning it on, the model test run will be scored.
    Here is what the `run-tests.sh` parameters should now look like.
    As text
     1  #!/bin/bash
     2  ##=========+====================+================================================+
     3  ##RD       run-tests.sh         | Assign Parameters for all model runs
     4  ##RFILE    +====================+=======+===============+======+=================+
     5  ##DESC     .--------------------+-------+---------------+------+-----------------+
     6  #            This script is used by run-aitestr.sh
     7  #
     8  ##LIC      .--------------------+----------------------------------------------+
     9  #            Copyright (c) 2025 JScriptWare and 8020Date-FormR * Released under
    10  #            MIT License: http://www.opensource.org/licenses/mit-license.php
    11  ##CHGS     .--------------------+----------------------------------------------+
    12  #.(50416.08   4/16/25 RAM  5:50p| Witten by Robin Mattern
    13  #.(50506.03   5/06/25 RAM  9:45a| Add DRYRUN to affect DOIT and DEBUG
    14  #.(50507.02   5/07/25 RAM  7:00a| New way to turn score on an off 
    15  #.(50514.01   5/14/25 RAM  8:15a| Add override parameters in project dir
    16  #
    17  ##PRGM     +====================+===============================================+
    18  ##ID 69.600. Main0              |
    19  ##SRCE     +====================+===============================================+
    20  #
    21  #    export LOGGER=
    22  #    export LOGGER="log"                        # .(50514.01.1 RAM Override display sections -- no spaces before or after = sign)
    23  #    export LOGGER="inputs"
    24       export LOGGER="log,inputs"
    25
    26       export DOIT="1"                            # .(50506.03.5 Do it unless DRYRUN="1")
    27       export DEBUG="0"                           # .(50506.03.6 Runs node with --inspect-brk, if bDOIT="1", unless DRYRUN="0")
    28       export DRYRUN="0"                          # .(50506.03.7 RAM Add DRYRUN)
    29       export SCORING="1"                         # .(50507.02.8 RAM Run scoring after models are run)
    30
    31       export PC_CODE="bt001p"
    32
    33       export SEARCH_MODEL="qwen2:0.5b"           # .(50514.01.2 RAM Override models)
    34       export SCORING_MODEL="qwen2:0.5b"          # .(50514.01.3)
    35  #    export SCORING_SECTIONS="Results,RunId"    # .(50521.01.1 RAM Override display sections for scoring model run)
    36
    37       export SYSTEM_PROMPT="all-sys: Summarize the information provided and answer the user's prompt accordingly."     
    38       export USER_PROMPT="all-usr: What is so special about ios 17"        
    39       export RAG_COLLECTIONS="s13_apple-ipad-txt"        
    40
    41  ##SRCE     +====================+===============================================+
    42  ##RFILE    +====================+=======+===================+======+=============+
    
  1. Run a model in s11_search-mod-app folder in it's server1 directory.
    This app only ask questions of the model.

    cd AIDocs_testR/server1/s11_*
    ait s11 t011
    As text
    50512.0958.03  s11           Running test: t011
    
    -----------------------------------------------------------
    
      Merging file, .env_s11-template_bt001p.txt, with file, s11_model-tests.txt.
       to create an .env file with the following parameters:
    
        1. Model:           llama3.2:3b
        2. CTX_Size:        4000
        3. Temperature:     0.3
        4. SysPmt Code:     GKN1-SIMP
        5. Do Doc Search:   No
        6. Do Web Search:   No
        7. Use SysPmt File: Yes
        8. Use UsrPmt File: Yes
        9. Test Title:      t011_llama3.2;3b_1,1-test on h2q6nv
       10. SysPrompt Tests: 1
       11. UsrPrompt Runs:  1
       12. First Run Id:    s11_t011.01
       13. Sections:        Parms,Docs,Search,Stats,Results
    
      Saved .env file for test run t011.
    
    50512.0958.04  s11  t011     Running ./run-tests.mjs t011
    
    50512.0958.04  s11  t011.01  Starting llama3.2:3b          GKN1-SIMP  KN1    4000  0.3
    50512.0958.24                Finished llama3.2:3b       in 19.35 secs, 22.87 tps
    
    -----------------------------------------------------------
    
    50512.0958.24  s14  t001     Running score_u2.10.mjs for s11_t011.01
    50512.0958.24  s14  t001.12  Starting qwen2:0.5b           GKN0-SIMP  KP0    4000  0.7
    50512.0958.29                Finished qwen2:0.5b        in 5.17 secs, 55.74 tps
    50512.0958.29  s11  t011.01  Finished with these scores of 10, 9, 8
    
  2. Run a model in s12_search-web-app from it's folder.
    This app will search the Internet for web pages or documents that we can ask questions of.

    cd ../s12_*
    ait s12 t011
    50513.0938.35  s12           Running test: t011
    
    -----------------------------------------------------------
    
      Merging file, .env_s12-template_rm231d.txt, with file, s12_model-tests.txt.
       to create an .env file with the following parameters:
    
        1. Model:           llama3.2:3b
        2. CTX_Size:        4000
        3. Temperature:     0.3
        4. SysPmt Code:     GKN1-SIMP
        5. Do Doc Search:   No
        6. Do Web Search:   Yes
        7. Use SysPmt File: No
        8. Use UsrPmt File: No
        9. Test Title:      t011_llama3.2;3b_1,1-test on rm231d
       10. SysPrompt Tests: 1
       11. UsrPrompt Runs:  1
       12. First Run Id:    s12_t011.01
       13. Sections:        Parms,Docs,Search,Stats,Results
    
      Saved .env file for test run t011.
    
    50513.0938.35  s12  t011     Running ./run-tests.mjs t011
    
    50513.0938.35  s12  t011.01  Starting llama3.2:3b          GKN0-SIMP  KP0    4000  0.3
    50513.0938.53                Finished llama3.2:3b       in 16.20 secs, 21.01 tps
    
    -----------------------------------------------------------
    
    50513.0938.53  s14  t001     Running score_u2.10.mjs for s12_t011.01
    50513.0938.53  s14  t001.27  Starting gemma2:2b            GKN0-SIMP  KP0    4000  0.7
    50513.0939.10                Finished gemma2:2b         in 16.66 secs, 23.32 tps
    50513.0939.10  s12  t011.01  Finished with these scores of 8, 6, 7
    
  3. Run a model in s13_search-rag-app from its folder.

    cd ../s13_*

    This app will search local files. Before running it there are a couple of prequisites. The local files must be imported into a ChromaDB vector database. We'll do this later by importing a colection of documents. For now, the Chroma vector database must be running.

        * No Relevant Documents were returned from the Vector DB for the Collection: s13_apple-ipad.
        robin@Robins-Mac-mini AIDocs_testR (master)# ait chroma import s13
    
        robin@Robins-Mac-mini AIDocs_testR (master)# ait import s13 
        Deleted collection: 's13_apple-ipad-txt'.
        Collection ready:   's13_apple-ipad-txt'.
    
        Embedding chunks from: './data/AI.testR.4u/files/apple/iPad_ Should You Buy_ Feature List, Reviews, and Advice.txt'
        Embedding chunk 0 at position: 0 + 2244
        Embedding chunk 1 at position: 2244 + 1512
        Embedding chunk 2 at position: 3756 + 1675
        Embedding chunk 3 at position: 5431 + 1003
        Embedding chunk 4 at position: 6434 + 1094
        Embedding chunk 5 at position: 7528 + 1141
        Embedding chunk 6 at position: 8669 + 1368
        Embedding chunk 7 at position: 10037 + 1279
        Embedding chunk 8 at position: 11316 + 1229
        Embedding chunk 9 at position: 12545 + 1242
        Embedding chunk 10 at position: 13787 + 1529
        Embedding chunk 11 at position: 15316 + 905
        Embedding chunk 12 at position: 16221 + 1374
        Embedding chunk 13 at position: 17595 + 999
        Embedding chunk 14 at position: 18594 + 10844
        Embedding chunk 15 at position: 29438 + 3292
        Embedding chunk 16 at position: 32730 + 1331
    
        Collection, 's13_apple-ipad-txt', import complete.
        robin@Robins-Mac-mini AIDocs_testR (master)# ait s13 t011         
    
        50519.2121.38  s13           Running test: t011
    
        50519.2121.38  s13  t011     Running search_u2.10.mjs 
    
        50519.2121.39  s13  t011.01  Starting llama3.2:3b          GKN1-SIMP  KN1    4000  0.3
        50519.2121.39                Finished llama3.2:3b       in NaN secs, NaN tps
    
        ----------------------------------------------------------    
    
    ait chroma start
    ait s13 t011
    50513.1013.06  s13           Running test: t011
    
    -----------------------------------------------------------
    
      Merging file, .env_s13-template_rm231d.txt, with file, s13_model-tests.txt.
       to create an .env file with the following parameters:
    
        1. Model:           llama3.2:3b
        2. CTX_Size:        4000
        3. Temperature:     0.3
        4. SysPmt Code:     GKN1-SIMP
        5. Do Doc Search:   Yes
        6. Do Web Search:   No
        7. Use SysPmt File: Yes
        8. Use UsrPmt File: Yes
        9. Test Title:      t011_llama3.2;3b_1,1-test on rm231d
       10. SysPrompt Tests: 1
       11. UsrPrompt Runs:  1
       12. First Run Id:    s13_t011.01
       13. Sections:        Parms,Docs,Search,Stats,Results
       14. Collection:      s13_apple-ipad-txt
    
      Saved .env file for test run t011.
    
    50513.1013.07  s13  t011     Running ./run-tests.mjs t011
    
    50513.1013.08  s13  t011.01  Starting llama3.2:3b          GKN1-SIMP  KN1    4000  0.3
    50513.1013.13                Finished llama3.2:3b       in 4.54 secs, 99.50 tps
    
    -----------------------------------------------------------
    
    50513.1013.13  s14  t001     Running score_u2.10.mjs for s13_t011.01
    50513.1013.13  s14  t001.16  Starting gemma2:2b            GKN0-SIMP  KP0    4000  0.7
    50513.1013.16                Finished gemma2:2b         in 2.50 secs, 110.42 tps
    50513.1013.16  s13  t011.01  Finished with these scores of 8, 7, 9
    
G. View all output for each model run...
  1. Let's open the run-tests.sh bash script again and change the sections that are displayed.

    Comment line 24 # export LOGGER="log,inputs"
    • LOGGER: by turning off this override, we'll see all the sections set for subsequent test runs.
    Here is what the `run-tests.sh` parameters should now look like.
    As text
     1  #!/bin/bash
     2  ##=========+====================+================================================+
     3  ##RD       run-tests.sh         | Assign Parameters for all model runs
     4  ##RFILE    +====================+=======+===============+======+=================+
     5  ##DESC     .--------------------+-------+---------------+------+-----------------+
     6  #            This script is used by run-aitestr.sh
     7  #
     8  ##LIC      .--------------------+----------------------------------------------+
     9  #            Copyright (c) 2025 JScriptWare and 8020Date-FormR * Released under
    10  #            MIT License: http://www.opensource.org/licenses/mit-license.php
    11  ##CHGS     .--------------------+----------------------------------------------+
    12  #.(50416.08   4/16/25 RAM  5:50p| Witten by Robin Mattern
    13  #.(50506.03   5/06/25 RAM  9:45a| Add DRYRUN to affect DOIT and DEBUG
    14  #.(50507.02   5/07/25 RAM  7:00a| New way to turn score on an off 
    15  #.(50514.01   5/14/25 RAM  8:15a| Add override parameters in project dir
    16  #
    17  ##PRGM     +====================+===============================================+
    18  ##ID 69.600. Main0              |
    19  ##SRCE     +====================+===============================================+
    20  #
    21  #    export LOGGER=
    22  #    export LOGGER="log"                        # .(50514.01.1 RAM Override display sections -- no spaces before or after = sign)
    23  #    export LOGGER="inputs"
    24  #    export LOGGER="log,inputs"
    25
    26       export DOIT="1"                            # .(50506.03.5 Do it unless DRYRUN="1")
    27       export DEBUG="0"                           # .(50506.03.6 Runs node with --inspect-brk, if bDOIT="1", unless DRYRUN="0")
    28       export DRYRUN="0"                          # .(50506.03.7 RAM Add DRYRUN)
    29       export SCORING="1"                         # .(50507.02.8 RAM Run scoring after models are run)
    30
    31       export PC_CODE="bt001p"
    32
    33       export SEARCH_MODEL="qwen2:0.5b"           # .(50514.01.2 RAM Override models)
    34       export SCORING_MODEL="qwen2:0.5b"          # .(50514.01.3)
    35  #    export SCORING_SECTIONS="Results,RunId"    # .(50521.01.1 RAM Override display sections for scoring model run)
    36
    37       export SYSTEM_PROMPT="all-sys: Summarize the information provided and answer the user's prompt accordingly."     
    38       export USER_PROMPT="all-usr: What is so special about ios 17"        
    39       export RAG_COLLECTIONS="s13_apple-ipad-txt"        
    40
    41  ##SRCE     +====================+===============================================+
    42  ##RFILE    +====================+=======+===================+======+=============+
    
  2. Let's run the three model apps again to see the output for all sections: `Parms,Search, Docs,Stats,Results, as well all sections when running the scoring model.

    ait s11 011
      Running test for: 't011' for app s11.
    
      Merging file, .env_s11-template_cn0g0p.txt, with file, s11_model-tests.txt.
       to create an .env file with the following parameters:
    
        1. Model:           llama3.2:3b
        2. CTX_Size:        4000
        3. Temperature:     0.3
        4. SysPmt Code:     GKN1-SIMP
        5. Do Doc Search:   No
        6. Do Web Search:   No
        7. Use SysPmt File: Yes
        8. Use UsrPmt File: Yes
        9. Test Title:      t011_llama3.2;3b_1,1-test on cn0g0p
       10. SysPrompt Tests: 1
       11. UsrPrompt Runs:  1
       12. First Run Id:    s11_t011.01
       13. Sections:        Parms,Docs,Search,Stats,Results
    
      Saved .env file for test run t011.
    
    --------------------------------------------------------------------------------------------------------------------------------------------------
      - AIC90[ 192]  Setting logfile to: './docs/a11_search-app/25.05.May/a11_t011_llama3.2;3b_1,1-test on cn0g0p/s11_t011.01.4.50513.1017_Response.txt
    -------------------------------------------------------------------------------------------------------------------------------------
    ---------------------------------------------------------
    * No text content for the AI model to query or summarize.
    
    Combined Prompt for Model: llama3.2:3b  (RunId: s11_t011.01, No: 1 of 1)
    ----------------------------------------------------------------------------------------------
      Docs:      "0 Sources, 0 bytes from collection, ''."
      SysPrompt: "You are a helpful and informative AI assistant. Answer questions accurately and concisely, drawing on a wide range of general knowledge. If you don't know the answer, say so. "
      UsrPrompt: "KN1: Explain the key differences between transformer and RNN architectures in deep learning."
      Prompt:    "{UsrPrompt}. {SysPrompt}, {Docs}"
    
    Ollama Response for Model: llama3.2:3b  (RunId: s11_t011.01, No: 1 of 1)
    -------------------------------------------------------------------------------------------------------------------------------------------------
    I'd be happy to explain the key differences between Transformer and RNN (Recurrent Neural Network) architectures in deep learning.
    
    **What are RNNs?**
    RNNs are a type of neural network designed to handle sequential data, such as text, speech, or time series data. They process input data one step
        at a time, using the previous steps' information to make predictions about the current step.
    
    **What are Transformers?**
    Transformers, on the other hand, are a more recent architecture introduced in 2017 by Vaswani et al. They also handle sequential data but do so
        differently than RNNs.
    
    **Key differences:**
    
    1. **Sequential Processing**: Both RNNs and Transformers process input data sequentially, but they approach this processing in different ways.
    2. **Self-Attention Mechanism**: Transformers use a self-attention mechanism to weigh the importance of each input element relative to every other
        element. This allows them to attend to multiple parts of the input simultaneously, which is particularly useful for tasks like machine translation
        and text summarization. RNNs, by contrast, process input sequentially and rely on recurrent connections to capture relationships between
        consecutive elements.
    3. **Lack of Recurrence**: Transformers do not have recurrence or feedback loops like RNNs, which means they don't need to store information from
        previous steps in memory. Instead, they use the self-attention mechanism to capture long-range dependencies directly.
    4. **Parallelization**: Due to their lack of recurrence and self-attention mechanism, Transformers can be more easily parallelized than RNNs,
        making them more computationally efficient for large-scale tasks.
    5. **Input Size Limitation**: Traditional RNN architectures often have an input size limitation due to the vanishing gradient problem, which
        occurs when gradients are backpropagated through time. This limitation is largely alleviated by Transformers, which can handle inputs of arbitrary
        length without significant performance degradation.
    
    **When to use each?**
    
    * Use RNNs for tasks that require sequential processing and have a large amount of context, such as:
    + Language modeling
    + Sentiment analysis
    + Speech recognition
    * Use Transformers for tasks that benefit from parallelization and self-attention mechanisms, such as:
    + Machine translation
    + Text summarization
    + Image captioning
    
    Keep in mind that these are general guidelines, and the choice between RNNs and Transformers ultimately depends on the specific task requirements
        and performance characteristics.
    
    Do you have any further questions about this topic?
    -------------------------------------------------------------------------------------------------------------------------------------------------
    
    ----------------------------------------------------------------------------------------------
    Ollama Run Statistics:
    ---------------------------------------------------------
        Server: rm228d-w10p_Windows-Prod1 (127.0.0.1)
        Operating System:       Win11 Pro
        CPU/GPU/RAM:            i7-13700HX, RTX 4080, 32 GB
        Computer:               HP OMEN 16
        Session.Post ID:        s11_t011.01.4.50513.1017
        Model Name:             llama3.2:3b
        Temperature:            0.3
        Context Window:         4000 bytes
        Total Duration:         4.70 seconds
        Eval Count:             506 tokens
        Eval Duration:          4.60 seconds
        Prompt Eval Count:      78 tokens
        Tokens per Second:      109.90 tps
    
    ----------------------------------------------------------------------------------------------
    ========== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== -----
    
    50513.1017.07  s14  t001     Running score_u2.10.mjs for s11_t011.01
    --------------------------------------------------------------------------------------------------------------------------------------------------
      - AIC90[ 192]  Setting logfile to: './docs/a14_grading-app/25.05.May/a14_t001_gemma2;2b_1,1-test on rm228p/s14_t001.18.4.50513.1017_Response.txt
    -------------------------------------------------------------------------------------------------------------------------------------
    
    Files Search Prompt: "What is this document about?"
    ---------------------------------------------------------
    
      Reading from file: ./s14_scoring-prompt.txt
    
    Combined Prompt for Model: gemma2:2b  (RunId: s14_t001.18, No: 1 of 1)
    ---------------------------------------------------------------------------------------------- 
      Docs:      "1 Source, 6152 bytes from file, 's14_scoring-prompt.txt'."
      SysPrompt: "Summarize the information and provide an answer. Use only the information in the following articles to answer the question: "
      UsrPrompt: "KP0: What is this document about?"
      Prompt:    "{UsrPrompt}. {SysPrompt}, {Docs}"
    
    Ollama Response for Model: gemma2:2b  (RunId: s14_t001.18, No: 1 of 1)
    -------------------------------------------------------------------------------------------------------------------------------------------------
    ### Evaluation for Response
    
    **Accuracy**: 9
    Justification: The response provides accurate and detailed information about the key differences between RNNs and Transformers, including their
        processing mechanisms, self-attention mechanism, and limitations.  It utilizes relevant terminology and avoids any unsupported claims or
        fabrications. The provided examples of when to use each are appropriate and help illustrate the general applications of these architectures.
    
    **Relevance**: 10
    Justification: The response directly addresses the prompt's question regarding the key differences between RNNs and Transformers, providing a
        concise and comprehensive explanation. It highlights both the core concepts and practical aspects in a clear and organized manner, aligning
        perfectly with the user's intent to understand these architectures.
    
    **Coherence**: 8
    Justification: The response is well-structured and logically flows from defining RNNs and transformers to outlining their differences through a
        series of numbered key points, while providing examples for each architecture's use cases. There are minor transition points between the
        explanations that could be improved.
    
    **Total Score**: 27/30
    Overall Comments: The response effectively and accurately addresses the user prompt, providing a clear and detailed explanation of RNNs vs.
        Transformers. It is highly relevant to the request and exhibits good coherence in its presentation.
    
    -------------------------------------------------------------------------------------------------------------------------------------------------
    
    ----------------------------------------------------------------------------------------------
    Ollama Run Statistics:
    ---------------------------------------------------------
        Server: rm228d-w10p_Windows-Prod1 (127.0.0.1)
        Operating System:       Win11 Pro
        CPU/GPU/RAM:            i7-13700HX, RTX 4080, 32 GB
        Computer:               HP OMEN 16
        Session.Post ID:        s14_t001.18.4.50513.1017
        Model Name:             gemma2:2b
        Temperature:            0.7
        Context Window:         4000 bytes
        Total Duration:         2.52 seconds
        Eval Count:             260 tokens
        Eval Duration:          2.31 seconds
        Prompt Eval Count:      1307 tokens
        Tokens per Second:      112.38 tps
    
    ----------------------------------------------------------------------------------------------
    ========== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== ------ ===== -----
    
    50513.1017.10  s11  t011.01  Finished with these scores of 9, 8, 10
    
H. Change the prompts for the model test runs
  1. Let's look at the model-tests file for the first model app, s11_search-web-app and change the sections to be displayed.

    Open the file: server1/s11_search-app/s11_model-tests.txt
                                                       Runs,    DOCs,   USPF,  # Use s13_system-prompt.txt file
       TestId,   Model,              CTX_SIZE, SysPmtCd, Temp,   Tests,   URLs,   UUPF,  Sections
    -----------, --------------------, ------, ---------, ---, ---,---,  --,--,  --,--,  ---------------------------------
    a11_t010.01, llama3.2:3b,            4000, GKN1-SIMP, 0.7,   2,  4,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t011.01, llama3.2:3b,            4000, GKN1-SIMP, 0.3,   1,  1,   0, 0,   1, 1,  "Parms,Search,Results"
    a11_t012.01, llama3.2:3b,            4000, GKN2-SIMP, 0.6,   1,  4,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t013.01, llama3.2:3b,            4000, GKN3-SIMP, 0.9,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t014.01, llama3.2:3b,            4000, GKN4-DETA, 0.3,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t015.01, llama3.2:3b,            4000, GKN5-DETA, 0.6,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t016.01, llama3.2:3b,            4000, GKN6-DETA, 0.9,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t017.01, llama3.2:3b,            4000, GKN7-REAS, 0.3,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t018.01, llama3.2:3b,            4000, GKN8-REAS, 0.6,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Results"
    a11_t019.01, llama3.2:3b,            4000, GKN9-REAS, 0.9,   0,  0,   0, 0,   1, 1,  "Parms,Docs,Search,Stats,Result3"
    
    a11_t020.01, phi3,                   4000, GKN1-SIMP, 0.7,   9,  1,   0, 0,   1, 0,  "RunId,Stats"
    a11_t021.01, phi3,                   4000, GKN1-SIMP, 0.3,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t022.01, phi3,                   4000, GKN2-SIMP, 0.6,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t023.01, phi3,                   4000, GKN3-SIMP, 0.9,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t024.01, phi3,                   4000, GKN4-DETA, 0.3,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t025.01, phi3,                   4000, GKN5-DETA, 0.6,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t026.01, phi3,                   4000, GKN6-DETA, 0.9,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t027.01, phi3,                   4000, GKN7-REAS, 0.3,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t028.01, phi3,                   4000, GKN8-REAS, 0.6,   1,  1,   0, 0,   0, 1,  "RunId,Stats"
    a11_t029.01, phi3,                   4000, GKN9-REAS, 0.9,   1,  1,   0, 0,   0, 1,  "RunId,Stat3"
    
    a11_t030.01, granite3.1-dense:2b,    4000, GKN1-SIMP, 0.7,   9, 25,   0, 0,   0, 1,  "Parms,Stats,Results"
    a11_t031.01, granite3.1-dense:2b,    4000, GKN1-SIMP, 0.3,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t032.01, granite3.1-dense:2b,    4000, GKN2-SIMP, 0.6,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t033.01, granite3.1-dense:2b,    4000, GKN3-SIMP, 0.9,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t034.01, granite3.1-dense:2b,    4000, GKN4-DETA, 0.3,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t035.01, granite3.1-dense:2b,    4000, GKN5-DETA, 0.6,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t036.01, granite3.1-dense:2b,    4000, GKN6-DETA, 0.9,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t037.01, granite3.1-dense:2b,    4000, GKN7-REAS, 0.3,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t038.01, granite3.1-dense:2b,    4000, GKN8-REAS, 0.6,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Results"
    a11_t039.01, granite3.1-dense:2b,    4000, GKN9-REAS, 0.9,   1, 25,   0, 0,   1, 1,  "Parms,Stats,Result3"
    
    a11_t040.01, qwen2:0.5b,             6000, GKN1-SIMP, 0.7,   4,  6,   0, 0,   1, 1,  "RunId"
    a11_t041.01, qwen2:0.5b,            16000, GKN1-SIMP, 0.3,   1,  1,   0, 0,   0, 0,  "Parms,Docs,Search,Stats,Results"
    a11_t042.01, qwen2:0.5b,            32000, GKN2-SIMP, 0.6,   1,  2,   0, 0,   1, 0,  "RunId"
    a11_t043.01, qwen2:0.5b,            32768, GKN3-SIMP, 0.9,   3,  1,   0, 0,   1, 1,  "RunId"
    a11_t044.01, qwen2:0.5b,             4000, GKN4-DETA, 0.3,   2,  2,   0, 0,   1, 1,  "RunId"
    a11_t045.01, qwen2:0.5b,             4000, GKN5-DETA, 0.6,   1,  5,   0, 0,   0, 1,  "RunId"
    a11_t046.01, qwen2:0.5b,             4000, GKN6-DETA, 0.9,   2,  3,   0, 0,   1, 1,  "RunId"
    a11_t047.01, qwen2:0.5b,             4000, GKN7-REAS, 0.3,   7,  1,   0, 0,   1, 0,  "RunId"
    a11_t048.01, qwen2:0.5b,             4000, GKN8-REAS, 0.6,   1,  8,   0, 0,   0, 1,  "RunId"
    a11_t049.01, qwen2:0.5b,             4000, GKN9-REAS, 0.9,   0,  0,   0, 0,   0, 0,  "RunId"
    
    Change Sections for `a11_t011.011` to Parms,Search,Results"
    • PC_CODE: by making it empty, a new Hardware code will be generated.
    Open the file: server1/s14_scoring-app/s14_model-tests.txt
                                                               Runs,    DOCs,   USPF,  # Use s13_system-prompt.txt file
       TestId,   Model,              CTX_SIZE, SysPmtCd, Temp,   Tests,   URLs,   UUPF,  Sections
    -----------, --------------------, ------, ---------, ---, ---,---,  --,--,  --,--,  ---------------------------------
    a14_t001.01, qwen2:0.5b,            16000, GKN1-SIMP, 0.3,   1,  1,   0, 0,   1, 0,  "Parms,Search,Results"
    a14_t002.01, qwen2:0.5b,            32000, GKN2-SIMP, 0.6,   1,  2,   0, 0,   1, 0,  "RunId"
    a14_t003.01, qwen2:0.5b,            32768, GKN3-SIMP, 0.9,   3,  1,   0, 0,   1, 1,  "RunId"
    a14_t004.01, qwen2:0.5b,             4000, GKN4-DETA, 0.3,   2,  2,   0, 0,   1, 1,  "RunId"
    a14_t005.01, qwen2:0.5b,             4000, GKN5-DETA, 0.6,   1,  5,   0, 0,   0, 1,  "RunId"
    a14_t006.01, qwen2:0.5b,             4000, GKN6-DETA, 0.9,   2,  3,   0, 0,   1, 1,  "RunId"
    a14_t007.01, qwen2:0.5b,             4000, GKN7-REAS, 0.3,   7,  1,   0, 0,   1, 0,  "RunId"
    a14_t008.01, qwen2:0.5b,             4000, GKN8-REAS, 0.6,   1,  8,   0, 0,   0, 1,  "RunId"
    a14_t009.01, qwen2:0.5b,             4000, GKN9-REAS, 0.9,   0,  0,   0, 0,   0, 0,  "RunId"
    
    Change Sections for `a11_t011.011` to Parms,Search,Results"
    • PC_CODE: by making it empty, a new Hardware code will be generated.
  2. Let's run it again to see a new readable hardware code being created, and output for sections: `Parms,Stats,Results,

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published