-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexample4.py
135 lines (115 loc) · 4.07 KB
/
example4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# Copyright (c) [2021] Alessio Russo [alessior@kth.se]. All rights reserved.
# This file is part of PythonVRFT.
# PythonVRFT is free software: you can redistribute it and/or modify
# it under the terms of the MIT License. You should have received a copy of
# the MIT License along with PythonVRFT.
# If not, see <https://opensource.org/licenses/MIT>.
#
# Code author: [Alexander Berndt - alberndt@kth.se]
# Last update: 10th January 2020, by alessior@kth.se
#
import numpy as np
import matplotlib.pyplot as plt
import scipy.signal as scipysig
from vrft import *
# Example 4
# ------------
# In this example we see how to apply VRFT to a
# more complex SISO model, specifically, the three-pulley
# system analyzed in the original VRFT paper:
#
# "Virtual reference feedback tuning:
# a direct method for the design offeedback controllers"
# -- Campi et al. 2003
#
# As in Example 3, we consider the case of measurement
# noise using instrumental variables. Input data is generated
# using random normal noise
dt = 0.05
t_start = 0
t_end = 10
t = np.array([i * dt for i in range(int(t_end/dt))])
# Plant P(z)
num_P = [0.28261, 0.50666]
den_P = [1, -1.41833, 1.58939, -1.31608, 0.88642]
sys = ExtendedTF(num_P, den_P, dt=dt)
def generate_data(sys, u, t):
t, y = scipysig.dlsim(sys, u, t)
y = y.flatten() + 0.5 * np.random.normal(size = t.size)
return iddata(y, u, dt, [0, 0, 0])
u = np.random.normal(size=t.size)
data1 = generate_data(sys, u, t)
data2 = generate_data(sys, u, t)
data = [data1, data2]
# Reference Model
# z^-3 (1-alpha)^2
# M(z) = ---------------------
# (1 - alpha z^-1)^2
#
# with alpha = e^{-dt omega}, omega = 10
#
omega = 10
alpha = np.exp(-dt*omega)
num_M = [(1-alpha)**2]
den_M = [1, -2*alpha, alpha**2, 0]
refModel = ExtendedTF(num_M, den_M, dt=dt)
# Controller C(z,O) where O is $\theta$
#
# O_0 z^5 + O_1 z^4 + O_2 z^3 + O_3 z^2 + O_4 z^1 + O_5
# C(z,O) = -------------------------------------------------------
# z^5 - z^4
#
control = [ExtendedTF([1, 0], [1, -1], dt=dt),
ExtendedTF([1], [1, -1], dt=dt),
ExtendedTF([1], [1, -1, 0], dt=dt),
ExtendedTF([1], [1, -1, 0, 0], dt=dt),
ExtendedTF([1], [1, -1, 0, 0, 0], dt=dt),
ExtendedTF([1], [1, -1, 0, 0, 0, 0], dt=dt)]
#Experiment filter
#
# L(z) = M(z) ( 1 - M(z) )
#
prefilter = refModel * (1 - refModel)
# VRFT method with Instrumental variables
theta_iv, r_iv, loss_iv, C_iv = compute_vrft(data, refModel, control, prefilter, iv=True)
# VRFT method without Instrumental variables
theta_noiv, r_noiv, loss_noiv, C_noiv = compute_vrft(data1, refModel, control, prefilter, iv=False)
# Obtained controller
print('------IV------')
print("Loss: {}\nTheta: {}\nController: {}".format(loss_iv, theta_iv, C_iv))
print('------No IV------')
print("Loss: {}\nTheta: {}\nController: {}".format(loss_noiv, theta_noiv, C_noiv))
# Closed loop system
closed_loop_iv = (C_iv * sys).feedback()
closed_loop_noiv = (C_noiv * sys).feedback()
t = t[:len(r_iv)]
u = np.ones(len(t))
_, yr = scipysig.dlsim(refModel, u, t)
_, yc_iv = scipysig.dlsim(closed_loop_iv, u, t)
_, yc_noiv = scipysig.dlsim(closed_loop_noiv, u, t)
_, ys = scipysig.dlsim(sys, u, t)
yr = yr.flatten()
ys = ys.flatten()
yc_noiv = yc_noiv.flatten()
yc_iv = yc_iv.flatten()
fig, ax = plt.subplots(4, sharex=True, figsize=(12,8), dpi= 100, facecolor='w', edgecolor='k')
ax[0].plot(t, yr,label='Reference System')
ax[0].plot(t, yc_iv, label='CL System - IV')
ax[0].plot(t, yc_noiv, label='CL System - No IV')
ax[0].set_title('CL Systems response')
ax[0].grid(True)
ax[1].plot(t, ys, label='OL System')
ax[1].set_title('OL Systems response')
ax[1].grid(True)
ax[2].plot(t, data1.y[:len(r_iv)])
ax[2].grid(True)
ax[2].set_title('Experiment data')
ax[3].plot(t, r_iv)
ax[3].grid(True)
ax[3].set_title('Virtual Reference')
# Now add the legend with some customizations.
legend = ax[0].legend(loc='lower right', shadow=True)
# The frame is matplotlib.patches.Rectangle instance surrounding the legend.
frame = legend.get_frame()
frame.set_facecolor('0.90')
plt.show()