-
Notifications
You must be signed in to change notification settings - Fork 398
/
Copy pathtest_one_hot.py
323 lines (261 loc) · 13.8 KB
/
test_one_hot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""Tests for the OneHotEncoder."""
from unittest import TestCase # or `from unittest import ...` if on Python 3.4+
import category_encoders as encoders
import numpy as np
import pandas as pd
import tests.helpers as th
class TestOneHotEncoder(TestCase):
"""Tests for the OneHotEncoder."""
def test_one_hot(self):
"""Test basic functionality."""
X = th.create_dataset(n_rows=100)
X_t = th.create_dataset(n_rows=50, extras=True)
enc = encoders.OneHotEncoder(verbose=1, return_df=False)
enc.fit(X)
self.assertEqual(
enc.transform(X_t).shape[1],
enc.transform(X).shape[1],
'We have to get the same count of columns despite the presence of a new value',
)
enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='indicator')
enc.fit(X)
out = enc.transform(X_t)
self.assertIn('extra_-1', out.columns)
enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='return_nan')
enc.fit(X)
out = enc.transform(X_t)
self.assertEqual(len([x for x in out.columns if str(x).startswith('extra_')]), 3)
enc = encoders.OneHotEncoder(verbose=1, return_df=True, handle_unknown='error')
# The exception is already raised in fit() because transform() is called there to get
# feature_names right.
enc.fit(X)
with self.assertRaises(ValueError):
enc.transform(X_t)
enc = encoders.OneHotEncoder(
verbose=1, return_df=True, handle_unknown='return_nan', use_cat_names=True
)
enc.fit(X)
out = enc.transform(X_t)
self.assertIn('extra_A', out.columns)
enc = encoders.OneHotEncoder(
verbose=1, return_df=True, use_cat_names=True, handle_unknown='indicator'
)
enc.fit(X)
out = enc.transform(X_t)
self.assertIn('extra_-1', out.columns)
# test inverse_transform
X_i = th.create_dataset(n_rows=100, has_missing=False)
X_i_t = th.create_dataset(n_rows=50, has_missing=False)
cols = ['underscore', 'none', 'extra', 'categorical']
enc = encoders.OneHotEncoder(verbose=1, use_cat_names=True, cols=cols)
enc.fit(X_i)
obtained = enc.inverse_transform(enc.transform(X_i_t))
th.verify_inverse_transform(X_i_t, obtained)
def test_fit_transform_use_cat_names(self):
"""Test that use_cat_names works as expected.
@ToDo: This test is not very useful as it seems to be covered by other tests already.
"""
encoder = encoders.OneHotEncoder(
cols=[0], use_cat_names=True, handle_unknown='indicator', return_df=False
)
result = encoder.fit_transform([[-1]])
self.assertListEqual([[1, 0]], result.tolist())
def test_inverse_transform_duplicated_cat_names(self):
"""Test that inverse_transform works with duplicated cat names.
This can happen if use_cat_names is true and the two new column names coincide because
col_1 + label_A is the lame as col_2 + label_B.
"""
cases = {"should work if use_cat_names is True": True,
"should work if use_cat_names is False": False}
for case, use_cat_names in cases.items():
with self.subTest(case=case):
encoder = encoders.OneHotEncoder(cols=['match', 'match_box'],
use_cat_names=use_cat_names)
value = pd.DataFrame({'match': pd.Series('box_-1'), 'match_box': pd.Series(-1)})
transformed = encoder.fit_transform(value)
inverse_transformed = encoder.inverse_transform(transformed)
pd.testing.assert_frame_equal(value, inverse_transformed)
def test_fit_transform_duplicated_column_rename(self):
"""Check that # is added to duplicated column names.
Column names can be duplicated either by use_cat_names=True or by having the label -1
and adding an indicator column.
"""
encoder = encoders.OneHotEncoder(
cols=['match', 'match_box'], use_cat_names=True, handle_unknown='indicator'
)
value = pd.DataFrame({'match': pd.Series('box_-1'), 'match_box': pd.Series('-1')})
result = encoder.fit_transform(value)
columns = result.columns.tolist()
self.assertSetEqual(
{'match_box_-1', 'match_-1', 'match_box_-1#', 'match_box_-1##'}, set(columns)
)
def test_fit_transform_handle_unknown_value(self):
"""Test that unseen values are encoded as all zeroes."""
train = pd.DataFrame({'city': ['Chicago', 'Seattle']})
enc = encoders.OneHotEncoder(handle_unknown='value')
enc.fit(train)
with self.subTest("should encode unseen values as all zeroes"):
test = pd.DataFrame({'city': ['Chicago', 'Detroit']})
expected_result = pd.DataFrame(
{'city_1': [1, 0], 'city_2': [0, 0]}, columns=['city_1', 'city_2']
)
result = enc.transform(test)
pd.testing.assert_frame_equal(expected_result, result)
with self.subTest("should work if no unseen data"):
expected_result = pd.DataFrame(
{'city_1': [1, 0], 'city_2': [0, 1]}, columns=['city_1', 'city_2']
)
result = enc.transform(train)
pd.testing.assert_frame_equal(expected_result, result)
def test_fit_transform_handle_unknown_indicator(self):
"""Test that unseen values are encoded with an indicator column."""
train = pd.DataFrame({'city': ['Chicago', 'Seattle']})
enc = encoders.OneHotEncoder(handle_unknown='indicator')
enc.fit(train)
with self.subTest("Should create a column even if no unseen value in transform stage"):
expected_result = pd.DataFrame(
{'city_1': [1, 0], 'city_2': [0, 1], 'city_-1': [0, 0]},
columns=['city_1', 'city_2', 'city_-1'],
)
result = enc.transform(train)
pd.testing.assert_frame_equal(expected_result, result)
with self.subTest("Should create a column if unseen value in transform stage"):
test = pd.DataFrame({'city': ['Chicago', 'Detroit']})
expected_result = pd.DataFrame(
{'city_1': [1, 0], 'city_2': [0, 0], 'city_-1': [0, 1]},
columns=['city_1', 'city_2', 'city_-1'],
)
result = enc.transform(test)
pd.testing.assert_frame_equal(expected_result, result)
def test_handle_missing_error(self):
"""Test that missing values raise an error."""
data_no_missing = ['A', 'B', 'B']
data_w_missing = [np.nan, 'B', 'B']
encoder = encoders.OneHotEncoder(handle_missing='error')
result = encoder.fit_transform(data_no_missing)
expected = [[1, 0], [0, 1], [0, 1]]
self.assertEqual(result.to_numpy().tolist(), expected)
self.assertRaisesRegex(ValueError, '.*null.*', encoder.transform, data_w_missing)
self.assertRaisesRegex(ValueError, '.*null.*', encoder.fit, data_w_missing)
def test_handle_missing_return_nan(self):
"""Test that missing values are encoded as NaN in each dummy column."""
train = pd.DataFrame({'x': ['A', np.nan, 'B']})
encoder = encoders.OneHotEncoder(handle_missing='return_nan', use_cat_names=True)
result = encoder.fit_transform(train)
pd.testing.assert_frame_equal(
result,
pd.DataFrame({'x_A': [1, np.nan, 0], 'x_B': [0, np.nan, 1]}),
)
def test_handle_missing_ignore(self):
"""Test that missing values are encoded as 0 in each dummy column."""
train = pd.DataFrame(
{'x': ['A', 'B', np.nan], 'y': ['A', None, 'A'], 'z': [np.nan, 'B', 'B']}
)
train['z'] = train['z'].astype('category')
expected_result = pd.DataFrame(
{'x_A': [1, 0, 0], 'x_B': [0, 1, 0], 'y_A': [1, 0, 1], 'z_B': [0, 1, 1]}
)
encoder = encoders.OneHotEncoder(handle_missing='ignore', use_cat_names=True)
result = encoder.fit_transform(train)
pd.testing.assert_frame_equal(result, expected_result)
def test_handle_missing_ignore_test_mapping(self):
"""Test that the mapping is correct if handle_missing='ignore'."""
train = pd.DataFrame({'city': ['Chicago', np.nan, 'Geneva']})
expected_result = pd.DataFrame({'city_1': [1, 0, 0], 'city_2': [0, 0, 1]})
encoder = encoders.OneHotEncoder(handle_missing='ignore')
result = encoder.fit(train).transform(train)
expected_mapping = pd.DataFrame(
[
[1, 0],
[0, 1],
[0, 0],
[0, 0],
],
columns=['city_1', 'city_2'],
index=[1, 2, -2, -1],
)
pd.testing.assert_frame_equal(expected_result, result)
pd.testing.assert_frame_equal(expected_mapping, encoder.category_mapping[0]['mapping'])
def test_handle_missing_indicator(self):
"""Test that missing values are encoded with an indicator column."""
with self.subTest("Should create a column if NaN in training set"):
train = ['A', 'B', np.nan]
encoder = encoders.OneHotEncoder(handle_missing='indicator', handle_unknown='value')
result = encoder.fit_transform(train)
expected = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
self.assertEqual(result.to_numpy().tolist(), expected)
with self.subTest("should create a column if NaN not in training set"):
train = ['A', 'B']
encoder = encoders.OneHotEncoder(handle_missing='indicator', handle_unknown='value')
result = encoder.fit_transform(train)
expected = [[1, 0, 0], [0, 1, 0]]
self.assertEqual(result.to_numpy().tolist(), expected)
# if NaN occurs in prediction it should be encoded as a new column
test = ['A', 'B', np.nan]
encoded_test = encoder.transform(test)
expected_test = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
self.assertEqual(encoded_test.to_numpy().tolist(), expected_test)
def test_handle_unknown_indicator(self):
"""Test that unseen values are encoded with an indicator column."""
train = ['A', 'B']
encoder = encoders.OneHotEncoder(handle_unknown='indicator', handle_missing='value')
encoder.fit(train)
with self.subTest("should create a column if unseen value in transform stage"):
test = ['A', 'B', 'C']
result = encoder.transform(test)
expected = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
self.assertEqual(result.to_numpy().tolist(), expected)
with self.subTest("should also create a column if no unseen value in transform"):
result = encoder.transform(train)
expected = [[1, 0, 0], [0, 1, 0]]
self.assertEqual(result.to_numpy().tolist(), expected)
def test_inverse_transform_missing_value(self):
"""Test the inverse transform with handle_missing='value'.
This should output the original data if the input data is inverse transformed.
"""
train = pd.DataFrame({'city': ['chicago', np.nan]})
enc = encoders.OneHotEncoder(handle_missing='value', handle_unknown='value')
result = enc.fit_transform(train)
original = enc.inverse_transform(result)
pd.testing.assert_frame_equal(train, original)
def test_inverse_transform_missing_return_nan(self):
"""Test the inverse transform with handle_missing='return_nan'.
This should output the original data if the input data is inverse transformed.
"""
train = pd.DataFrame({'city': ['chicago', np.nan]})
enc = encoders.OneHotEncoder(handle_missing='return_nan', handle_unknown='value')
result = enc.fit_transform(train)
original = enc.inverse_transform(result)
pd.testing.assert_frame_equal(train, original)
def test_inverse_transform_missing_and_unknown_return_nan(self):
"""Test the inverse transform with handle_missing and handle_unknown='return_nan'.
This should raise a warning as the unknown category cannot be inverted.
"""
train = pd.DataFrame({'city': ['chicago', np.nan]})
test = pd.DataFrame({'city': ['chicago', 'los angeles']})
enc = encoders.OneHotEncoder(handle_missing='return_nan', handle_unknown='return_nan')
enc.fit(train)
result = enc.transform(test)
message = (
'inverse_transform is not supported because transform impute '
'the unknown category nan when encode city'
)
with self.assertWarns(UserWarning, msg=message):
enc.inverse_transform(result)
def test_inverse_transform_handle_missing_value(self):
"""Test inverse transform if missing values are encoded with strategy 'value'."""
train = pd.DataFrame({'city': ['chicago', np.nan]})
enc = encoders.OneHotEncoder(handle_missing='value', handle_unknown='return_nan')
enc.fit(train)
test_data_case_1 = pd.DataFrame({'city': ['chicago', 'los angeles']})
test_data_case_2 = pd.DataFrame({'city': ['chicago', np.nan, 'los angeles']})
expected_case_2 = pd.DataFrame({'city': ['chicago', np.nan, np.nan]})
cases = {"should encode unknown into nan": (test_data_case_1, train),
"should encode unknown into nan and missing into nan": (test_data_case_2,
expected_case_2),
}
for case, (test_data, expected) in cases.items():
with self.subTest(case=case):
result = enc.transform(test_data)
original = enc.inverse_transform(result)
pd.testing.assert_frame_equal(expected, original)