|
| 1 | +package recommendation.model; |
| 2 | + |
| 3 | +import org.apache.spark.api.java.JavaRDD; |
| 4 | +import org.apache.spark.api.java.JavaSparkContext; |
| 5 | +import org.apache.spark.mllib.recommendation.ALS; |
| 6 | +import org.apache.spark.mllib.recommendation.MatrixFactorizationModel; |
| 7 | +import org.apache.spark.mllib.recommendation.Rating; |
| 8 | +import recommendation.data.InputRating; |
| 9 | +import recommendation.data.RDDHelper; |
| 10 | +import recommendation.exceptions.ModelNotReadyException; |
| 11 | + |
| 12 | +import java.util.Collection; |
| 13 | +import java.util.List; |
| 14 | +import java.util.concurrent.locks.ReentrantReadWriteLock; |
| 15 | +import java.util.stream.Collectors; |
| 16 | + |
| 17 | +public class RecommendationMlModel { |
| 18 | + |
| 19 | + public static final String SPARK_APP_NAME = "Recommendation Engine"; |
| 20 | + public static final String SPARK_MASTER = "local"; |
| 21 | + |
| 22 | + private ALS als = new ALS(); |
| 23 | + private MatrixFactorizationModel model; |
| 24 | + |
| 25 | + private RDDHelper rddHelper = new RDDHelper(new JavaSparkContext(SPARK_MASTER, SPARK_APP_NAME)); |
| 26 | + |
| 27 | + private ReentrantReadWriteLock mutex = new ReentrantReadWriteLock(); |
| 28 | + |
| 29 | + private boolean modelIsReady = false; |
| 30 | + |
| 31 | + public boolean isModelReady() { |
| 32 | + return modelIsReady; |
| 33 | + } |
| 34 | + |
| 35 | + public Double getInterestPrediction(Integer userId, Integer eventId) throws ModelNotReadyException { |
| 36 | + if (!modelIsReady) |
| 37 | + throw new ModelNotReadyException(); |
| 38 | + mutex.readLock().lock(); |
| 39 | + Double prediction = model.predict(userId, eventId); |
| 40 | + mutex.readLock().unlock(); |
| 41 | + return prediction; |
| 42 | + } |
| 43 | + |
| 44 | + public void createModel(Collection<InputRating> ratings) { |
| 45 | + trainModel(ratings); |
| 46 | + } |
| 47 | + |
| 48 | + private void trainModel(Collection<InputRating> ratings) { |
| 49 | + JavaRDD<Rating> ratingRDD = rddHelper.getRddFromCollection(createSparkRating(ratings)).cache(); |
| 50 | + if (ratingRDD.isEmpty()) |
| 51 | + return; |
| 52 | + mutex.writeLock().lock(); |
| 53 | + model = als.setRank(10).setIterations(10).run(ratingRDD); |
| 54 | + mutex.writeLock().unlock(); |
| 55 | + modelIsReady = true; |
| 56 | + } |
| 57 | + |
| 58 | + |
| 59 | + private List<Rating> createSparkRating(Collection<InputRating> inputRatings) { |
| 60 | + return inputRatings |
| 61 | + .stream() |
| 62 | + .map(ir -> new Rating(ir.getUserId(), ir.getProductId(), ir.getProductId())) |
| 63 | + .collect(Collectors.toList()); |
| 64 | + } |
| 65 | +} |
0 commit comments