-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathimage_utils.py
114 lines (84 loc) · 3.6 KB
/
image_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
__author__ = 'Charlie'
import cv2
import numpy as np
def image_resize(image, width=-1, height=-1):
shape = image.shape
if width == -1:
if height == -1:
return image
else:
return cv2.resize(image, (int(height * shape[1] / shape[0]), height))
elif height == -1:
return cv2.resize(image, (width, int(width * shape[0] / shape[1])))
else:
cv2.resize(image, (width, height))
# Image has to eb gray scaled and gaussian blurred before calling this function
def auto_canny(image, sigma=0.33):
val = np.median(image)
lower = max(0, (1 - sigma) * val)
upper = min(255, (1 + sigma) * val)
return cv2.Canny(image, lower, upper)
def adaptive_threshold(image, option=cv2.THRESH_BINARY):
return cv2.adaptiveThreshold(image, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, option, 11, 2)
def sharpen_image(image):
kernel = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]], dtype=np.float)
return cv2.filter2D(image, -1, kernel)
def order_points(pts):
# The first entry in the list is the top-left,
# the second entry is the top-right, the third is the
# bottom-right, and the fourth is the bottom-left
rect = np.zeros((4, 2), dtype="float32")
# the top-left point will have the smallest sum, whereas
# the bottom-right point will have the largest sum
s = pts.sum(axis=1)
rect[0] = pts[np.argmin(s)]
rect[2] = pts[np.argmax(s)]
# now, compute the difference between the points, the
# top-right point will have the smallest difference,
# whereas the bottom-left will have the largest difference
diff = np.diff(pts, axis=1)
rect[1] = pts[np.argmin(diff)]
rect[3] = pts[np.argmax(diff)]
return rect
def image_rotate_by_90_clockwise(image):
rows, cols, depth = image.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), 90, 1)
return cv2.warpAffine(image, M, (rows, cols))
def image_rotate_by_90_anticlockwise(image):
rows, cols, depth = image.shape
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), -90, 1)
return cv2.warpAffine(image, M, (rows, cols))
def get_contours(gray_image, param=None):
'''
:param gray_image: input gray level image
:param param: higher threshold for canny edge detector, lower threshold is twice smaller. Default Auto Canny with sigma=0.33
:return:contours
'''
blurred = cv2.GaussianBlur(gray_image, (5, 5), 0)
if not param:
edged = auto_canny(gray_image)
# t, edged = cv2.threshold(gray_image, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
else:
edged = cv2.Canny(blurred, param / 2, param)
_, cnts, _ = cv2.findContours(edged, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return cnts
def sort_contours(cnts, method="left_to_right"):
axis = 0
reverse = False
if method == "right_to_left" or method == "bottom_to_top":
reverse = True
if method == "top_to_bottom" or method == "bottom_to_top":
axis = 1
bounding_boxes = [cv2.boundingRect(c) for c in cnts]
cnts, bounding_boxes = zip(*sorted(zip(cnts, bounding_boxes), key=lambda b: b[1][axis], reverse=reverse))
return cnts, bounding_boxes
def get_midpoint(ptA, ptB):
return (ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5
def detect_face(face_cascade, image):
gray_image = cv2.equalizeHist(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
faces = face_cascade.detectMultiScale(gray_image, 1.3, 5)
if len(faces) > 0:
return max(faces, key=lambda item: item[2] * item[3])
return None
def add_text(image, text):
cv2.putText(image, text, (15, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)