-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
294 lines (246 loc) · 12.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import sys
import copy
import logging
import os
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import to_hetero
import utils
from utils import create_output_dir, get_path, gaussian_normalize
from model import HiUrNet
from args import args
from graph import HeterogeneousODGraph
from loss import choose_criterion_type
from preprocessing import preprocessing
def train(model, data, optimizer, scheduler, criterion, clip_threshold, multi_task_weight):
model.train()
optimizer.zero_grad()
edge_label_index_dict = {'m2c': data['mesh', 'm2c', 'city'].edge_label_index,
'c2m': data['city', 'c2m', 'mesh'].edge_label_index,
'm2m': data['mesh', 'm2m', 'mesh'].edge_label_index}
target = {'c2m': data['city', 'c2m', 'mesh'].edge_label, 'm2c': data['mesh', 'm2c', 'city'].edge_label,
'm2m': data['mesh', 'm2m', 'mesh'].edge_label}
out = {}
out['c2m'], out['m2c'], out['m2m'] = model(data.x_dict,
data.edge_index_dict,
edge_label_index_dict)
c2m_loss = criterion(out['c2m'], target['c2m'])
m2c_loss = criterion(out['m2c'], target['m2c'])
m2m_loss = criterion(out['m2m'], target['m2m'])
loss = multi_task_weight[0] * c2m_loss + multi_task_weight[1] * m2c_loss + multi_task_weight[2] * m2m_loss
mse = {'c2m': F.mse_loss(out['c2m'], target['c2m']).sqrt(),
'm2c': F.mse_loss(out['m2c'], target['m2c']).sqrt(),
'm2m': F.mse_loss(out['m2m'], target['m2m']).sqrt()}
loss.backward()
if clip_threshold is not None:
nn.utils.clip_grad_norm_(model.parameters(), clip_threshold)
optimizer.step()
if scheduler is not None:
scheduler.step()
return float(loss), mse, float(c2m_loss), float(m2c_loss), float(m2m_loss)
@torch.no_grad()
def test(model, data, criterion, multi_task_weight):
model.eval()
edge_label_index_dict = {'m2c': data['mesh', 'm2c', 'city'].edge_label_index,
'c2m': data['city', 'c2m', 'mesh'].edge_label_index,
'm2m': data['mesh', 'm2m', 'mesh'].edge_label_index}
target = {'c2m': data['city', 'c2m', 'mesh'].edge_label, 'm2c': data['mesh', 'm2c', 'city'].edge_label,
'm2m': data['mesh', 'm2m', 'mesh'].edge_label}
out = {}
r_2 = {}
out['c2m'], out['m2c'], out['m2m'] = model(data.x_dict,
data.edge_index_dict,
edge_label_index_dict)
c2m_loss = criterion(out['c2m'], target['c2m'])
m2c_loss = criterion(out['m2c'], target['m2c'])
m2m_loss = criterion(out['m2m'], target['m2m'])
loss = multi_task_weight[0] * c2m_loss + multi_task_weight[1] * m2c_loss + multi_task_weight[2] * m2m_loss
out['c2m'][out['c2m'] < 0] = 0
out['m2c'][out['m2c'] < 0] = 0
out['m2m'][out['m2m'] < 0] = 0
r_2['c2m'] = np.corrcoef(out['c2m'].squeeze().cpu().detach().numpy(),
target['c2m'].squeeze().cpu().detach().numpy())[0][1] ** 2
r_2['m2c'] = np.corrcoef(out['m2c'].squeeze().cpu().detach().numpy(),
target['m2c'].squeeze().cpu().detach().numpy())[0][1] ** 2
r_2['m2m'] = np.corrcoef(out['m2m'].squeeze().cpu().detach().numpy(),
target['m2m'].squeeze().cpu().detach().numpy())[0][1] ** 2
return float(loss), out, target, r_2
def model_hetero(result_folder):
utils.save_dict_to_json(vars(args), os.path.join(result_folder, 'param.json'))
logger = logging.getLogger(__name__)
if args.device is None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
else:
device = torch.device(args.device)
utils.seed_everything(args.seed)
logger.info('Device: {}'.format(device))
multi_task_weight = [(1 - args.multi_task_weight_m2m) / 2,
(1 - args.multi_task_weight_m2m) / 2,
args.multi_task_weight_m2m]
dict_df_data = preprocessing()
if args.layer_type == 'GAT':
g = HeterogeneousODGraph(dict_df_data['xs'], dict_df_data['edges']['od'], dict_df_data['edges']['include'])
else:
g = HeterogeneousODGraph(dict_df_data['xs'], dict_df_data['edges']['od'], dict_df_data['edges']['include'],
neighbor=dict_df_data['edges']['neighbor'])
data = g.graph
data['mesh'].x = gaussian_normalize(data['mesh'].x)
early_stopper = utils.EarlyStopper(patience=args.early_stopper_patience, delta=args.early_stopper_delta)
transform = T.Compose([T.ToDevice(device),
T.RandomLinkSplit(num_val=0.05,
num_test=0.1,
neg_sampling_ratio=0.0,
edge_types=[('mesh', 'm2c', 'city'),
('city', 'c2m', 'mesh'),
('mesh', 'm2m', 'mesh')])])
assert data['mesh'].x.shape[1] == 43 or 86
assert data['city'].x.shape[0] == 43
assert data['city'].x.shape[1] == 43 or 86
train_data, val_data, test_data = transform(data)
# Delete edge_index for disabling message passing
if args.layer_type == 'HGT':
if not args.flow:
del train_data['c2m'].edge_index
del train_data['m2c'].edge_index
del train_data['m2m'].edge_index
del val_data['c2m'].edge_index
del val_data['m2c'].edge_index
del val_data['m2m'].edge_index
del test_data['c2m'].edge_index
del test_data['m2c'].edge_index
del test_data['m2m'].edge_index
if not args.inclusion:
del train_data['isin'].edge_index
del train_data['include'].edge_index
del val_data['isin'].edge_index
del val_data['include'].edge_index
del test_data['isin'].edge_index
del test_data['include'].edge_index
if args.geo:
pass
else:
del train_data['near'].edge_index
del val_data['near'].edge_index
del test_data['near'].edge_index
logger.info('The summary of the message passing edge: ')
for k, v in train_data.edge_index_dict.items():
logger.info('The edge type {} has the size {}: '.format(k, v.shape))
g.convert_split_edge_index_with_edge_value(train_data).to_csv(
os.path.join(result_folder, 'train_edges.csv'), header=False, index=False)
g.convert_split_edge_index_with_edge_value(val_data).to_csv(
os.path.join(result_folder, 'val_edges.csv'), header=False, index=False)
g.convert_split_edge_index_with_edge_value(test_data).to_csv(
os.path.join(result_folder, 'test_edges.csv'), header=False, index=False)
model = HiUrNet(in_channels=data['mesh'].x.shape[1],
hidden_channels=args.hidden_channels,
num_city=data['city'].x.shape[0],
data=train_data,
num_layers=args.num_layer,
heads=args.heads,
dropout=args.dropout,
layer_type=args.layer_type)
if args.layer_type == 'GAT':
model.encoder = to_hetero(model.encoder, data.metadata(), aggr='sum')
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.lr_weight_decay)
if args.scheduled:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=args.scheduler_step,
gamma=args.scheduler_gamma)
else:
scheduler = None
# Lazy initialization: run one model step to infer the number of parameters
with torch.no_grad():
model.encoder(train_data.x_dict, train_data.edge_index_dict)
best_loss = float('inf')
best_model = None
best_epoch = 1
train_losses = []
val_losses = []
r_2s = {'c2m': [], 'm2c': [], 'm2m': []}
criterion = choose_criterion_type(args.loss_type)
# Start training
start = time.time()
for epoch in range(1, args.epochs):
train_loss, _, c2m_loss, m2c_loss, m2m_loss = train(model,
train_data,
optimizer,
scheduler,
criterion,
args.clip_threshold,
multi_task_weight)
val_loss, _, _, r_2 = test(model, val_data, criterion, multi_task_weight)
if epoch % 10 == 1:
logger.info('Epoch: {:07d}, Training Loss: {:.4f}, Validation Loss: {:.4f}, '
'(c2m, m2c, m2m): {:.4f}, {:.4f}, {:.4f}'.format(epoch,
train_loss, val_loss,
c2m_loss, m2c_loss, m2m_loss))
train_losses.append(train_loss)
val_losses.append(val_loss)
r_2s['c2m'].append(r_2['c2m'])
r_2s['m2c'].append(r_2['m2c'])
r_2s['m2m'].append(r_2['m2m'])
if epoch % 10 == 1:
state = {'epoch': epoch, 'state_dict': model.state_dict(), 'optim_dict': optimizer.state_dict()}
utils.save_checkpoint(state, is_best=val_loss < best_loss, folder=result_folder)
if best_loss > val_loss:
best_epoch = epoch
best_loss = val_loss
best_model = copy.deepcopy(model)
early_stopper(val_loss, model)
if early_stopper.early_stop:
logger.info('Early Stopping!')
break
# End training
end = time.time()
logger.info('Training time elapsed: {}'.format(end - start))
logger.info('Best epoch is: {}'.format(best_epoch))
# Start inferring
start = time.time()
test_loss, out, target, _ = test(best_model, test_data, criterion, multi_task_weight)
# End inferring
end = time.time()
logger.info('Inferring time elapsed: {}'.format(end - start))
g.convert_split_edge_index_with_edge_value(test_data, [out, target]).to_csv(
os.path.join(result_folder, 'test_prediction.csv'), header=False, index=False)
result_c2m = utils.Metrics(out['c2m'], target['c2m'])
result_m2c = utils.Metrics(out['m2c'], target['m2c'])
result_m2m = utils.Metrics(out['m2m'], target['m2m'])
logger.info('C2M L2 Loss: {}'.format(result_c2m.rmse() ** 2))
logger.info('C2M RMSE: {}'.format(result_c2m.rmse()))
logger.info('C2M L1 Loss: {}'.format(result_c2m.mae()))
logger.info('C2M PCC: {}'.format(result_c2m.pcc()))
logger.info('C2M R_2: {}'.format(result_c2m.r_2()))
logger.info('C2M cpc: {}'.format(result_c2m.cpc()))
logger.info('M2C L2 Loss: {}'.format(result_m2c.rmse() ** 2))
logger.info('M2C RMSE: {}'.format(result_m2c.rmse()))
logger.info('M2C L1 Loss: {}'.format(result_m2c.mae()))
logger.info('M2C PCC: {}'.format(result_m2c.pcc()))
logger.info('M2C R_2: {}'.format(result_m2c.r_2()))
logger.info('M2C cpc: {}'.format(result_m2c.cpc()))
logger.info('M2M L2 Loss: {}'.format(result_m2m.rmse() ** 2))
logger.info('M2M RMSE: {}'.format(result_m2m.rmse()))
logger.info('M2M L1 Loss: {}'.format(result_m2m.mae()))
logger.info('M2M PCC: {}'.format(result_m2m.pcc()))
logger.info('M2M R_2: {}'.format(result_m2m.r_2()))
logger.info('M2M cpc: {}'.format(result_m2m.cpc()))
logger.info('Test Loss:{:.4f}'.format(test_loss))
def main():
result_folder = create_output_dir(args.save_folder, args.experiment_name)
# set output logging
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(get_path(os.path.join(result_folder, 'log.txt')))
console_handler = logging.StreamHandler(sys.stdout)
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
targets = console_handler, file_handler
logger.handlers = targets
model_hetero(result_folder)
if __name__ == '__main__':
main()