-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
241 lines (195 loc) · 9.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
from abc import ABC
from typing import Union, Dict
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch_geometric.nn import Linear, GATv2Conv, HGTConv
from torch_geometric.typing import Metadata
class GATEncoder(nn.Module):
def __init__(self, hidden_channels, out_channels, num_layers, heads=2, dropout=None):
super().__init__()
self.num_layers = num_layers
self.convs = nn.ModuleList()
self.norms = nn.ModuleList()
self.lins = nn.ModuleList()
for _ in range(num_layers - 1):
conv = GATv2Conv((-1, -1), hidden_channels, heads=heads, add_self_loops=False)
self.convs.append(conv)
lin = Linear(-1, hidden_channels * heads)
self.lins.append(lin)
norm = nn.BatchNorm1d(hidden_channels * heads)
self.norms.append(norm)
conv = GATv2Conv((-1, -1), hidden_channels, heads=heads, add_self_loops=False, concat=False)
self.convs.append(conv)
lin = Linear(-1, out_channels)
self.lins.append(lin)
norm = nn.BatchNorm1d(hidden_channels)
self.norms.append(norm)
self.use_dropout = True if dropout else False
if self.use_dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = nn.Identity()
self.reset_parameters()
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for lin in self.lins:
lin.reset_parameters()
def forward(self, x, edge_index):
for i in range(self.num_layers):
x = self.norms[i](self.convs[i](x, edge_index) + self.lins[i](x))
if i < self.num_layers - 1:
x = F.leaky_relu(x)
x = self.dropout(x)
return x
class HGTEncoder(nn.Module):
def __init__(self, hidden_channels, out_channels, num_layers, data, heads=2, dropout=None):
super().__init__()
self.num_layers = num_layers
self.lin_dict = nn.ModuleDict()
self.preprocess_dict = nn.ModuleDict()
self.convs = nn.ModuleList()
self.norms = nn.ModuleList()
for node_type in data.node_types:
self.lin_dict[node_type] = Linear(-1, hidden_channels)
self.preprocess_dict[node_type] = MLP(-1, hidden_channels, hidden_channels, dropout=dropout, flatten=False)
for _ in range(num_layers - 1):
conv = MyGCN(hidden_channels, hidden_channels, data.metadata(), heads)
self.convs.append(conv)
norm = nn.LayerNorm(hidden_channels)
self.norms.append(norm)
conv = MyGCN(hidden_channels, out_channels, data.metadata(), heads)
self.convs.append(conv)
norm = nn.LayerNorm(hidden_channels)
self.norms.append(norm)
self.use_dropout = True if dropout else False
if self.use_dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = nn.Identity()
self.reset_parameters()
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for k, v in self.lin_dict.items():
v.reset_parameters()
def forward(self, x_dict, edge_index_dict):
x_dict = {
node_type: F.gelu(self.lin_dict[node_type](x))
for node_type, x in x_dict.items()
}
for i in range(self.num_layers):
x_dict.update(self.convs[i](x_dict, edge_index_dict))
x_dict = {key: self.dropout(self.norms[i](h)) for key, h in x_dict.items()}
return x_dict
class MLP(nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, dropout=None, flatten=True):
super().__init__()
self.lin1 = Linear(in_channels, hidden_channels)
self.lin2 = Linear(hidden_channels, out_channels)
self.use_dropout = True if dropout else False
if self.use_dropout:
self.dropout = nn.Dropout(p=dropout)
else:
self.dropout = nn.Identity()
self.flatten = flatten
self.reset_parameters()
def reset_parameters(self):
self.lin1.reset_parameters()
self.lin2.reset_parameters()
def forward(self, x):
z = F.leaky_relu(self.lin1(x))
z = self.dropout(z)
z = self.lin2(z)
if self.flatten:
return z.view(-1)
else:
return z
class HiUrNet(nn.Module):
def __init__(self, in_channels, hidden_channels, num_city, num_layers=3, data=None, heads=2, dropout=None,
layer_type='HGT'):
super().__init__()
self.city_embed = torch.nn.Embedding(num_city, in_channels)
if layer_type == 'GAT':
self.encoder = GATEncoder(hidden_channels, hidden_channels, num_layers, heads=2, dropout=dropout)
elif layer_type == 'HGT':
self.encoder = HGTEncoder(hidden_channels, hidden_channels, num_layers, data, heads=heads, dropout=dropout)
else:
raise NotImplementedError
self.decoder_c2m = MLP(hidden_channels*2, hidden_channels, 1, dropout=dropout)
self.decoder_m2c = MLP(hidden_channels*2, hidden_channels, 1, dropout=dropout)
self.decoder_m2m = MLP(hidden_channels*2, hidden_channels, 1, dropout=dropout)
def forward(self, x_dict, edge_index_dict, edge_label_index_dict, target_type=None):
# if features are all zeros, use an embedding layer to learn feature distribution
if not x_dict['city'].any():
x_dict['city'] = self.city_embed(torch.arange(x_dict['city'].shape[0], device=x_dict['city'].get_device()))
if 'pref' in x_dict:
x_dict['pref'] = self.pref_embed(torch.arange(x_dict['pref'].shape[0],
device=x_dict['pref'].get_device_name()))
if 'region' in x_dict:
x_dict['region'] = self.region_embed(torch.arange(x_dict['region'].shape[0],
device=x_dict['region'].get_device_name()))
x_dict.update({k: v for k, v in x_dict.items()})
x_dict = self.encoder(x_dict, edge_index_dict)
city_emb_c2m = x_dict['city'][edge_label_index_dict['c2m'][0]]
mesh_emb_c2m = x_dict['mesh'][edge_label_index_dict['c2m'][1]]
mesh_emb_m2c = x_dict['mesh'][edge_label_index_dict['m2c'][0]]
city_emb_m2c = x_dict['city'][edge_label_index_dict['m2c'][1]]
mesh1_emb_m2m = x_dict['mesh'][edge_label_index_dict['m2m'][0]]
mesh2_emb_m2m = x_dict['mesh'][edge_label_index_dict['m2m'][1]]
z_c2m = torch.cat([city_emb_c2m, mesh_emb_c2m], dim=-1)
z_m2c = torch.cat([mesh_emb_m2c, city_emb_m2c], dim=-1)
z_m2m = torch.cat([mesh1_emb_m2m, mesh2_emb_m2m], dim=-1)
return_type_dict = {'c2m': z_c2m, 'm2m': z_m2m, 'm2c': z_m2c}
decode_type_dict = {'c2m': self.decoder_c2m, 'm2m': self.decoder_m2m, 'm2c': self.decoder_m2c}
if isinstance(target_type, list):
# For explanation, if explaining multiple edge types, concatenate the predicted values
r = []
for item in target_type:
assert not return_type_dict[item] is None
r.append(decode_type_dict[item](return_type_dict[item]))
return torch.cat(r, 0)
elif target_type is None or return_type_dict[target_type] is None:
return self.decoder_c2m(z_c2m), self.decoder_m2c(z_m2c), self.decoder_m2m(z_m2m)
else:
# For explanation, explaining a specific edge type
return decode_type_dict[target_type](return_type_dict[target_type])
def return_embedding_dict(self, x_dict, edge_index_dict):
with torch.no_grad():
emb = self.encoder(x_dict, edge_index_dict)
return emb['city'], emb['mesh']
class MyGCN(HGTConv, ABC):
def __init__(self,
in_channels: Union[int, Dict[str, int]],
out_channels: int,
metadata: Metadata,
heads: int,
**kwargs):
super().__init__(in_channels, out_channels, metadata, heads, **kwargs)
def _explain_message_with_masks(self,
inputs: Tensor,
dim_size: int,
edge_mask: Tensor,
loop_mask: Tensor) -> Tensor:
if self._apply_sigmoid:
edge_mask = edge_mask.sigmoid()
if inputs.size(self.node_dim) != edge_mask.size(0):
edge_mask = edge_mask[loop_mask]
loop = edge_mask.new_ones(dim_size)
edge_mask = torch.cat([edge_mask, loop], dim=0)
assert inputs.size(self.node_dim) == edge_mask.size(0)
size = [1] * inputs.dim()
size[self.node_dim] = -1
return inputs * edge_mask.view(size)
def explain_message(self, inputs: Tensor, size_i: int) -> Tensor:
edge_mask_dict = self._edge_mask
loop_mask_dict = self._loop_mask
edge_keys = self._edge_keys
assert isinstance(edge_mask_dict, dict)
edge_mask = torch.cat(
[edge_mask_dict[edge_type] for edge_type in edge_keys])
loop_mask = torch.cat(
[loop_mask_dict[edge_type] for edge_type in edge_keys])
return self._explain_message_with_masks(inputs, size_i, edge_mask, loop_mask)