-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathcontainerWithMostWater.cpp
57 lines (48 loc) · 1.73 KB
/
containerWithMostWater.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*
Given n non-negative integers a1, a2, ..., an , where each represents a point at coordinate (i, ai). n
vertical lines are drawn such that the two endpoints of the line i is at (i, ai) and (i, 0).
Find two lines, which, together with the x-axis forms a container, such that the container contains the most water.
Notice that you may not slant the container.
Input: height = [1,8,6,2,5,4,8,3,7]
Output: 49
Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7].
In this case, the max area of water the container can contain is 49.
Constraints:
n == height.length
2 <= n <= 105
0 <= height[i] <= 104
*/
/*
Time Complexity: O(N), where N is the size of the array
Space Complexity: O(1), Constant Space
*/
#include <bits/stdc++.h>
using namespace std;
int maxArea(vector<int> &height)
{
int n = height.size();
int i = 0; // one pointer to the start of the array
int j = n - 1; // one poninter to the end of the array
int mx = min(height[i], height[j]) * (j - i); // contains the max value of maximum water that can be stored
while (i < j)
{
if (height[i] < height[j]) // Checking condition if height pointed by i is less than that pointed by j if yes => incrementing i and updating value of mx
{
i++;
mx = max(mx, (min(height[i], height[j]) * (j - i)));
}
else // otherwise => decrementing j and updating value of mx
{
j--;
mx = max(mx, (min(height[i], height[j]) * (j - i)));
}
}
return mx;
}
int main() // driver function
{
vector<int> heights = {1,8,6,2,5,4,8,3,7};
int ans = maxArea(heights);
cout<<ans;
return 0;
}