-
Notifications
You must be signed in to change notification settings - Fork 353
/
Copy pathfindMinimumInRotatedSortedArray.cpp
68 lines (55 loc) · 2.24 KB
/
findMinimumInRotatedSortedArray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/*
Suppose an array of length n sorted in ascending order is rotated between 1 and n times.
For example, the array nums = [0,1,2,4,5,6,7] might become:
[4,5,6,7,0,1,2] if it was rotated 4 times.
[0,1,2,4,5,6,7] if it was rotated 7 times.
Notice that rotating an array [a[0], a[1], a[2], ..., a[n-1]] 1 time results in the array [a[n-1], a[0], a[1], a[2], ..., a[n-2]].
Given the sorted rotated array nums of unique elements, return the minimum element of this array.
You must write an algorithm that runs in O(log n) time.
Input: nums = [3,4,5,1,2]
Output: 1
Explanation: The original array was [1,2,3,4,5] rotated 3 times.
Constraints:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
All the integers of nums are unique.
nums is sorted and rotated between 1 and n times.
*/
/*
Time Complexity: O(log(N)), where N is the size of the array
Space Complexity: O(1), Constant Space
*/
#include <bits/stdc++.h>
using namespace std;
int findMin(vector<int> &nums)
{
int l = 0; // lower bound
int u = nums.size() - 1; // upper bound
int m = (l + u) / 2; // variable to track middle value
int n = nums.size();
while (l <= u)
{
int next = (m + 1) % n; // to track next index of middle value
int prev = (m - 1 + n) % n; // to track previoys index of middle value
if (nums[l] <= nums[u]) // if array is sorted => return value present at lower bound
return nums[l];
else if (nums[m] < nums[prev] && nums[m] < nums[next]) // if value at middle is less than value at next, previous => return value present at middle
return nums[m];
else if (nums[m] > nums[l]) // if value at middle > value at lower bound => update lower bound
l = next;
else if (nums[m] < nums[u]) // if value at middle < value at upper bound => update upper bound
u = prev;
else if (nums[u] <= nums[l]) // if value at upper <= value at lower bound => Whole array is reversed i.e. return value at upper bound
return nums[u];
m = (l + u) / 2;
}
return -1;
}
int main() // driver function
{
vector<int> array = {3, 4, 5, 1, 2};
int ans = findMin(array);
cout << ans;
return 0;
}