-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathFloatingPointFormulaManager.java
470 lines (413 loc) · 19.4 KB
/
FloatingPointFormulaManager.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
// This file is part of JavaSMT,
// an API wrapper for a collection of SMT solvers:
// https://github.com/sosy-lab/java-smt
//
// SPDX-FileCopyrightText: 2020 Dirk Beyer <https://www.sosy-lab.org>
//
// SPDX-License-Identifier: Apache-2.0
package org.sosy_lab.java_smt.api;
import static org.sosy_lab.java_smt.api.FormulaType.getFloatingPointType;
import java.math.BigDecimal;
import java.math.BigInteger;
import org.sosy_lab.common.rationals.Rational;
import org.sosy_lab.java_smt.api.FloatingPointNumber.Sign;
import org.sosy_lab.java_smt.api.FormulaType.FloatingPointType;
/**
* Floating point operations.
*
* <p>Most operations are overloaded: there is an option of either using the default rounding mode
* (set via the option {@code solver.floatingPointRoundingMode}), or providing the rounding mode
* explicitly.
*
* <p>If the result of an operation can not be exactly represented by the available floating-point
* type, i.e., the given precision is insufficient, the result is rounded to the nearest possible
* floating-point representation, depending on the given rounding mode.
*
* <p>Example: If the input number is too large to be represented as a floating point with the given
* type, it will be converted to positive infinity (+inf) or negative infinity (-inf). If the input
* number is too small to be represented with the given type (closer to zero than the smallest
* possible floating-point number), it will be converted to zero, with the sign preserved.
*/
public interface FloatingPointFormulaManager {
/**
* Creates a floating point formula representing the given double value with the specified type.
*/
FloatingPointFormula makeNumber(double n, FloatingPointType type);
/**
* Creates a floating point formula representing the given double value with the specified type
* and rounding mode.
*/
FloatingPointFormula makeNumber(
double n, FloatingPointType type, FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* Creates a floating point formula representing the given BigDecimal value with the specified
* type.
*/
FloatingPointFormula makeNumber(BigDecimal n, FloatingPointType type);
/**
* Creates a floating point formula representing the given BigDecimal value with the specified
* type and rounding mode.
*/
FloatingPointFormula makeNumber(
BigDecimal n, FloatingPointType type, FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* Creates a floating point formula representing the given string value with the specified type.
*
* <p>The string can be any valid floating-point number, e.g., "1.0", "1.0e-3", but also special
* values like "NaN", "Infinity", or "-0.0", etc. A leading "+" sign or "-" sign is allowed.
*/
FloatingPointFormula makeNumber(String n, FloatingPointType type);
/**
* Creates a floating point formula representing the given string value with the specified type
* and rounding mode.
*
* <p>The string can be any valid floating-point number, e.g., "1.0", "1.0e-3", but also special
* values like "NaN", "Infinity", or "-0.0", etc. A leading "+" sign or "-" sign is allowed.
*/
FloatingPointFormula makeNumber(
String n, FloatingPointType type, FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* Creates a floating point formula representing the given Rational value with the specified type.
*/
FloatingPointFormula makeNumber(Rational n, FloatingPointType type);
/**
* Creates a floating point formula representing the given Rational value with the specified type
* and rounding mode.
*/
FloatingPointFormula makeNumber(
Rational n, FloatingPointType type, FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* Creates a floating point formula from the given {@link FloatingPointNumber}.
*
* @param number the floating point number
*/
default FloatingPointFormula makeNumber(FloatingPointNumber number) {
return makeNumber(
number.getExponent(),
number.getMantissa(),
number.getMathSign(),
getFloatingPointType(number.getExponentSize(), number.getMantissaSize()));
}
/**
* Creates a floating point formula from the given exponent, mantissa, and sign-bit with the
* specified type.
*
* @param exponent the exponent part of the floating point number
* @param mantissa the mantissa part of the floating point number
* @param signBit the sign bit of the floating point number, e.g., true for negative numbers
*/
@Deprecated(
since = "2025.01, because using a boolean flag as signBit is misleading",
forRemoval = true)
default FloatingPointFormula makeNumber(
BigInteger exponent, BigInteger mantissa, boolean signBit, FloatingPointType type) {
return makeNumber(exponent, mantissa, Sign.of(signBit), type);
}
/**
* Creates a floating point formula from the given exponent, mantissa, and sign with the specified
* type.
*
* @param exponent the exponent part of the floating point number
* @param mantissa the mantissa part of the floating point number
* @param sign the sign of the floating point number
*/
FloatingPointFormula makeNumber(
BigInteger exponent, BigInteger mantissa, Sign sign, FloatingPointType type);
/**
* Creates a variable with exactly the given name.
*
* <p>Please make sure that the given name is valid in SMT-LIB2. Take a look at {@link
* FormulaManager#isValidName} for further information.
*
* <p>This method does not quote or unquote the given name, but uses the plain name "AS IS".
* {@link Formula#toString} can return a different String than the given one.
*/
FloatingPointFormula makeVariable(String pVar, FloatingPointType type);
FloatingPointFormula makePlusInfinity(FloatingPointType type);
FloatingPointFormula makeMinusInfinity(FloatingPointType type);
FloatingPointFormula makeNaN(FloatingPointType type);
/**
* Build a formula of compatible type from a {@link FloatingPointFormula}. This method uses the
* default rounding mode.
*
* <p>Compatible formula types are all numeral types and bitvector types. It is also possible to
* cast a floating-point number into another floating-point type. We do not support casting from
* boolean or array types. We try to keep an exact representation, however fall back to rounding
* if needed.
*
* @param source the source formula of floating-point type
* @param targetType the type of the resulting formula
* @throws IllegalArgumentException if an incompatible type is used, e.g. a {@link
* FloatingPointFormula} cannot be cast to {@link BooleanFormula}.
*/
@Deprecated(
forRemoval = true,
since = "2022.06, because of missing sign-bit for bitvector conversion")
default <T extends Formula> T castTo(FloatingPointFormula source, FormulaType<T> targetType) {
return castTo(source, true, targetType);
}
/**
* Build a formula of compatible type from a {@link FloatingPointFormula}.
*
* <p>Compatible formula types are all numeral types and bitvector types. It is also possible to
* cast a floating-point number into another floating-point type. We do not support casting from
* boolean or array types. We try to keep an exact representation, however fall back to rounding
* if needed.
*
* @param source the source formula of floating-point type
* @param targetType the type of the resulting formula
* @param pFloatingPointRoundingMode if rounding is needed, we apply the rounding mode.
* @throws IllegalArgumentException if an incompatible type is used, e.g. a {@link
* FloatingPointFormula} cannot be cast to {@link BooleanFormula}.
*/
@Deprecated(
forRemoval = true,
since = "2022.06, because of missing sign-bit for bitvector conversion")
default <T extends Formula> T castTo(
FloatingPointFormula source,
FormulaType<T> targetType,
FloatingPointRoundingMode pFloatingPointRoundingMode) {
return castTo(source, true, targetType, pFloatingPointRoundingMode);
}
/**
* Build a formula of compatible type from a {@link FloatingPointFormula}. This method uses the
* default rounding mode.
*
* <p>Compatible formula types are all numeral types and (signed/unsigned) bitvector types. It is
* also possible to cast a floating-point number into another floating-point type. We do not
* support casting from boolean or array types. We try to keep an exact representation, however
* fall back to rounding if needed.
*
* @param source the source formula of floating-point type
* @param signed if a {@link BitvectorFormula} is given as target, we additionally use this flag.
* Otherwise, we ignore it.
* @param targetType the type of the resulting formula
* @throws IllegalArgumentException if an incompatible type is used, e.g. a {@link
* FloatingPointFormula} cannot be cast to {@link BooleanFormula}.
*/
<T extends Formula> T castTo(
FloatingPointFormula source, boolean signed, FormulaType<T> targetType);
/**
* Build a formula of compatible type from a {@link FloatingPointFormula}.
*
* <p>Compatible formula types are all numeral types and (signed/unsigned) bitvector types. It is
* also possible to cast a floating-point number into another floating-point type. We do not
* support casting from boolean or array types. We try to keep an exact representation, however
* fall back to rounding if needed.
*
* @param source the source formula of floating-point type
* @param signed if a {@link BitvectorFormula} is given as target, we additionally use this flag.
* Otherwise, we ignore it.
* @param targetType the type of the resulting formula
* @param pFloatingPointRoundingMode if rounding is needed, we apply the rounding mode.
* @throws IllegalArgumentException if an incompatible type is used, e.g. a {@link
* FloatingPointFormula} cannot be cast to {@link BooleanFormula}.
*/
<T extends Formula> T castTo(
FloatingPointFormula source,
boolean signed,
FormulaType<T> targetType,
FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* Build a {@link FloatingPointFormula} from another compatible formula. This method uses the
* default rounding mode.
*
* <p>Compatible formula types are all numeral types and (signed/unsigned) bitvector types. It is
* also possible to cast a floating-point number into another floating-point type. We do not
* support casting from boolean or array types. We try to keep an exact representation, however
* fall back to rounding if needed.
*
* @param source the source formula of compatible type
* @param signed if a {@link BitvectorFormula} is given as source, we additionally use this flag.
* Otherwise, we ignore it.
* @param targetType the type of the resulting formula
* @throws IllegalArgumentException if an incompatible type is used, e.g. a {@link BooleanFormula}
* cannot be cast to {@link FloatingPointFormula}.
*/
FloatingPointFormula castFrom(Formula source, boolean signed, FloatingPointType targetType);
/**
* Build a {@link FloatingPointFormula} from another compatible formula.
*
* <p>Compatible formula types are all numeral types and (signed/unsigned) bitvector types. It is
* also possible to cast a floating-point number into another floating-point type. We do not
* support casting from boolean or array types. We try to keep an exact representation, however
* fall back to rounding if needed.
*
* @param source the source formula of compatible type
* @param signed if a {@link BitvectorFormula} is given as source, we additionally use this flag.
* Otherwise, we ignore it.
* @param targetType the type of the resulting formula
* @param pFloatingPointRoundingMode if rounding is needed, we apply the rounding mode.
* @throws IllegalArgumentException if an incompatible type is used, e.g. a {@link BooleanFormula}
* cannot be cast to {@link FloatingPointFormula}.
*/
FloatingPointFormula castFrom(
Formula source,
boolean signed,
FloatingPointType targetType,
FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* Create a formula that interprets the given bitvector as a floating-point value in the IEEE
* format, according to the given type. The sum of the sizes of exponent and mantissa of the
* target type plus 1 (for the sign bit) needs to be equal to the size of the bitvector.
*
* <p>Note: This method will return a value that is (numerically) far away from the original
* value. This method is completely different from {@link #castFrom}, which will produce a
* floating-point value close to the numeral value.
*/
FloatingPointFormula fromIeeeBitvector(BitvectorFormula number, FloatingPointType pTargetType);
/**
* Create a formula that produces a representation of the given floating-point value as a
* bitvector conforming to the IEEE format. The size of the resulting bitvector is the sum of the
* sizes of the exponent and mantissa of the input formula plus 1 (for the sign bit).
*/
BitvectorFormula toIeeeBitvector(FloatingPointFormula number);
FloatingPointFormula round(FloatingPointFormula formula, FloatingPointRoundingMode roundingMode);
// ----------------- Arithmetic relations, return type NumeralFormula -----------------
FloatingPointFormula negate(FloatingPointFormula number);
FloatingPointFormula abs(FloatingPointFormula number);
/**
* Returns the maximum value of the two given floating-point numbers. If one of the numbers is
* NaN, the other number is returned.
*/
FloatingPointFormula max(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Returns the minimum value of the two given floating-point numbers. If one of the numbers is
* NaN, the other number is returned.
*/
FloatingPointFormula min(FloatingPointFormula number1, FloatingPointFormula number2);
FloatingPointFormula sqrt(FloatingPointFormula number);
FloatingPointFormula sqrt(FloatingPointFormula number, FloatingPointRoundingMode roundingMode);
FloatingPointFormula add(FloatingPointFormula number1, FloatingPointFormula number2);
FloatingPointFormula add(
FloatingPointFormula number1,
FloatingPointFormula number2,
FloatingPointRoundingMode pFloatingPointRoundingMode);
FloatingPointFormula subtract(FloatingPointFormula number1, FloatingPointFormula number2);
FloatingPointFormula subtract(
FloatingPointFormula number1,
FloatingPointFormula number2,
FloatingPointRoundingMode pFloatingPointRoundingMode);
FloatingPointFormula divide(FloatingPointFormula number1, FloatingPointFormula number2);
FloatingPointFormula divide(
FloatingPointFormula number1,
FloatingPointFormula number2,
FloatingPointRoundingMode pFloatingPointRoundingMode);
FloatingPointFormula multiply(FloatingPointFormula number1, FloatingPointFormula number2);
FloatingPointFormula multiply(
FloatingPointFormula number1,
FloatingPointFormula number2,
FloatingPointRoundingMode pFloatingPointRoundingMode);
/**
* remainder: x - y * n, where n in Z is nearest to x/y. The result can be negative even for two
* positive arguments, e.g. "rem(5, 4) == 1" and "rem(5, 6) == -1", as opposed to integer modulo
* operators.
*/
FloatingPointFormula remainder(FloatingPointFormula dividend, FloatingPointFormula divisor);
// ----------------- Numeric relations, return type BooleanFormula -----------------
/**
* Create a term for assigning one floating-point term to another. This means both terms are
* considered equal afterward, based on their bit pattern (i.e., <code>0.0 != -0
* .0</code> and <code>NaN ==/!= NaN</code>, depending on the bit pattern of each NaN). This
* method is the same as the method <code>equal</code> for other theories.
*/
BooleanFormula assignment(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Create a term for comparing the equality of two floating-point terms, according to standard
* floating-point semantics (i.e., <code>NaN != NaN</code> and <code>0.0 == -0.0</code>). Be
* careful to not use this method when you really need {@link #assignment(FloatingPointFormula,
* FloatingPointFormula)}.
*/
BooleanFormula equalWithFPSemantics(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Returns whether an FP number is greater than another FP number. If one of the numbers is NaN,
* the result is always false.
*/
BooleanFormula greaterThan(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Returns whether an FP number is greater or equal than another FP number. If one of the numbers
* is NaN, the result is always false.
*/
BooleanFormula greaterOrEquals(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Returns whether an FP number is less than another FP number. If one of the numbers is NaN, the
* result is always false.
*/
BooleanFormula lessThan(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Returns whether an FP number is less or equal than another FP number. If one of the numbers is
* NaN, the result is always false.
*/
BooleanFormula lessOrEquals(FloatingPointFormula number1, FloatingPointFormula number2);
/**
* Check whether a floating-point number is NaN.
*
* <p>The bit patterns for NaN in SMTLIB are identical to IEEE 754:
*
* <ul>
* <li>sign=? (irrelevant for NaN)
* <li>exponent=11...11 (all bits are 1)
* <li>mantissa!=00...00 (mantissa is not all 0)
* </ul>
*/
BooleanFormula isNaN(FloatingPointFormula number);
/**
* Checks whether a formula is positive or negative infinity.
*
* <p>The bit patterns for infinity in SMTLIB are identical to IEEE 754:
*
* <ul>
* <li>sign=? (0 for +Inf, 1 for -Inf)
* <li>exponent=11...11 (all bits are 1)
* <li>mantissa=00...00 (all bits are 0)
* </ul>
*/
BooleanFormula isInfinity(FloatingPointFormula number);
/**
* Checks whether a formula is positive or negative zero.
*
* <p>The bit patterns for zero in SMTLIB are identical to IEEE 754:
*
* <ul>
* <li>sign=? (0 for +0, 1 for -0)
* <li>exponent=00...00 (all bits are 0)
* <li>mantissa=00...00 (all bits are 0)
* </ul>
*/
BooleanFormula isZero(FloatingPointFormula number);
/**
* Checks whether a formula is normal FP number.
*
* <p>The bit patterns for normal FP numbers in SMTLIB are identical to IEEE 754:
*
* <ul>
* <li>sign=? (0 for positive numbers, 1 for negative numbers)
* <li>exponent!=00...00 and exponent!=11...11 (exponent is not all 0 or all 1)
* <li>mantissa=? (mantissa is irrelevant)
* </ul>
*/
BooleanFormula isNormal(FloatingPointFormula number);
/**
* Checks whether a formula is subnormal FP number.
*
* <p>The bit patterns for subnormal FP numbers in SMTLIB are identical to IEEE 754:
*
* <ul>
* <li>sign=? (0 for positive numbers, 1 for negative numbers)
* <li>exponent=00...00 (exponent is all 0)
* <li>mantissa!=00...00 (mantissa is not all 0)
* </ul>
*/
BooleanFormula isSubnormal(FloatingPointFormula number);
/**
* Checks whether a formula is negative, including -0.0.
*
* <p>The bit patterns for negative FP numbers in SMTLIB are identical to IEEE 754:
*
* <ul>
* <li>sign=1 (1 for negative numbers)
* <li>number is not NaN, i.e., exponent=11...11 implies mantissa=00...00
* </ul>
*/
BooleanFormula isNegative(FloatingPointFormula number);
}