-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathNumeralFormulaManager.java
109 lines (83 loc) · 4.13 KB
/
NumeralFormulaManager.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
// This file is part of JavaSMT,
// an API wrapper for a collection of SMT solvers:
// https://github.com/sosy-lab/java-smt
//
// SPDX-FileCopyrightText: 2020 Dirk Beyer <https://www.sosy-lab.org>
//
// SPDX-License-Identifier: Apache-2.0
package org.sosy_lab.java_smt.api;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;
import org.sosy_lab.common.rationals.Rational;
import org.sosy_lab.java_smt.api.NumeralFormula.IntegerFormula;
/**
* This interface represents the Numeral Theory.
*
* @param <ParamFormulaType> formulaType of the parameters
* @param <ResultFormulaType> formulaType of arithmetic results
*/
@SuppressWarnings("InterfaceTypeParameterName")
public interface NumeralFormulaManager<
ParamFormulaType extends NumeralFormula, ResultFormulaType extends NumeralFormula> {
ResultFormulaType makeNumber(long number);
ResultFormulaType makeNumber(BigInteger number);
/**
* Create a numeric literal with a given value. Note: if the theory represented by this instance
* cannot handle rational numbers, the value may get rounded or otherwise represented imprecisely.
*/
ResultFormulaType makeNumber(double number);
/**
* Create a numeric literal with a given value. Note: if the theory represented by this instance
* cannot handle rational numbers, the value may get rounded or otherwise represented imprecisely.
*/
ResultFormulaType makeNumber(BigDecimal number);
ResultFormulaType makeNumber(String pI);
ResultFormulaType makeNumber(Rational pRational);
/**
* Creates a variable with exactly the given name.
*
* <p>Please make sure that the given name is valid in SMT-LIB2. Take a look at {@link
* FormulaManager#isValidName} for further information.
*
* <p>This method does not quote or unquote the given name, but uses the plain name "AS IS".
* {@link Formula#toString} can return a different String than the given one.
*/
ResultFormulaType makeVariable(String pVar);
FormulaType<ResultFormulaType> getFormulaType();
// ----------------- Arithmetic relations, return type NumeralFormula -----------------
ResultFormulaType negate(ParamFormulaType number);
ResultFormulaType add(ParamFormulaType number1, ParamFormulaType number2);
ResultFormulaType sum(List<ParamFormulaType> operands);
ResultFormulaType subtract(ParamFormulaType number1, ParamFormulaType number2);
/**
* Create a formula representing the division of two operands according to Boute's Euclidean
* definition (DOI: 10.1145/128861.128862).
*
* <p>If the denominator evaluates to zero (division-by-zero), either directly as value or
* indirectly via an additional constraint, then the solver is allowed to choose an arbitrary
* value for the result of the division (cf. SMTLib standard version 2.6 for the division operator
* in Int or Real theory). The details of this are implementation specific and may change solver
* by solver.
*
* <p>Note: Some solvers, e.g., Yices2, abort with an exception when exploring a division-by-zero
* during the SAT-check. This is not compliant to the SMTLIB standard, but sadly happens.
*/
ResultFormulaType divide(ParamFormulaType numerator, ParamFormulaType denominator);
ResultFormulaType multiply(ParamFormulaType number1, ParamFormulaType number2);
// ----------------- Numeric relations, return type BooleanFormula -----------------
BooleanFormula equal(ParamFormulaType number1, ParamFormulaType number2);
/** All given numbers are pairwise unequal. */
BooleanFormula distinct(List<ParamFormulaType> pNumbers);
BooleanFormula greaterThan(ParamFormulaType number1, ParamFormulaType number2);
BooleanFormula greaterOrEquals(ParamFormulaType number1, ParamFormulaType number2);
BooleanFormula lessThan(ParamFormulaType number1, ParamFormulaType number2);
BooleanFormula lessOrEquals(ParamFormulaType number1, ParamFormulaType number2);
/**
* The {@code floor} operation returns the nearest integer formula that is less or equal to the
* given argument formula.
*
* <p>For rational formulas, SMTlib2 denotes this operation as {@code to_int}.
*/
IntegerFormula floor(ParamFormulaType formula);
}