-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrun_picos.py
executable file
·686 lines (543 loc) · 26.1 KB
/
run_picos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
"""PICOSS interface main script.
This script allows the user to run the GUI interface. It is assumed that the seismic data streams has been previously
processed and stored in an correct format within the data folder (e.g: miniseed), or accessed via data repositories,
such as IRIS. In practice, if the data can be stored in NumPy format, it can be read nby PICOSS.
PLease, make sure the required modules listed in "requirements.txt" are installed within the working Python environment
you are interfacing PICOSS with.
"""
# Graphical packages
from PyQt4 import QtGui, QtCore
from matplotlib.widgets import RectangleSelector
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
# Own packages
from picos_gui import picoss_main
from picos_gui import picoss_func
from picos_gui import gui_functions
from picoss.picos_gui.utils import picos_utils
import picoss_config
# Numerical Computation packages
import math
import numpy as np
# System packages
import os
import sys
import time
import multiprocessing
# Seismology
import obspy
# Others
import gc
import webbrowser
gc.enable()
class Picos(QtGui.QMainWindow, picoss_main.Ui_MainWindow):
def __init__(self, parent=None):
super(Picos, self).__init__(parent)
self.setupUi(self)
self.create_menus()
self.current_label = ""
self.trace_loaded = None
self.trace_loaded_filename = ""
# STATION, CHANNEL NETWORK AND LOCATION CODES
self.station = None
self.channel = None
self.network = None
self.location = None
self.component = None
self.trace_number = 0 # by default
self.day_of_the_year = None
self.duration = 0
# String to save
self.destination_folder = ""
self.toSave = None
self.fm = 0 # Sampling Frequency, depends of the active trace
self.ts = 0 # Time frequency interval. Depends of the trace
self.highpass_freq = 0.5 # highpass frequency default for the active trace.
self.stream = None
self.active_trace = None
self.x1, self.x2 = 0, 0
self.first_ticked = 0
self.last_ticked = 0
# dates for interfacing with the servers
self.start_data = None
self.end_data = None
self.connective_client = None
# axis for the graphs
self.ax = None
self.ax1 = None
self.ax2 = None
# lta_sta
self.on_of = None
# Segmentation table results
self.segmentation_table = None
# buttons action definition
self.btnfft.clicked.connect(self.paint_fft) # button for the FFT
self.btnspecgram.clicked.connect(self.paint_spectrogram) # button for the specgram
self.buttonGroup.buttonClicked.connect(self.handleButtonClicked) # button for the labels
self.submitwindow.clicked.connect(self.submit_current_window)
self.submittrace.clicked.connect(self.submit_current_trace)
# ExtraMenus
self.show() # Show the interface
def create_menus(self):
"""
Function to create the selected main menus in our interface. Functionality is appended on-the-fly with other
function calls, along with expanded capabilities.
"""
# File menu
self.file_menu = QtGui.QMenu('&Data', self)
self.file_menu.addAction('&Select From Folder', self.show_isolated,
QtCore.Qt.CTRL + QtCore.Qt.Key_F)
self.file_menu.addAction('&Request From Server', self.show_connection,
QtCore.Qt.CTRL + QtCore.Qt.Key_R)
self.file_menu.addAction('&Frequency and Filtering', self.show_auxiliar_menu)
self.file_menu.addAction('&Quit', self.close,
QtCore.Qt.CTRL + QtCore.Qt.Key_Q)
self.menuBar().addMenu(self.file_menu)
# Functionalities with extra visualizations
self.menu_howTo = QtGui.QMenu("&Extra info", self)
self.menu_howTo.addAction('&Visualize other components', self.show_components_menu)
self.menu_howTo.addAction('&Visualize other stations', self.show_other_stations)
self.menuBar().addMenu(self.menu_howTo)
# Functionalities for the Detection
self.menu_detection = QtGui.QMenu("&Detection", self)
self.menu_detection.addAction('&STA/LTA', self.show_STALTA)
self.menu_detection.addAction('&A', self.show_AMPA)
self.menu_detection.addAction('&Load picking file', self.load_picking_results)
self.menuBar().addMenu(self.menu_detection)
# Functionalities for the Detection
self.menu_classification = QtGui.QMenu("&Classification", self)
self.menu_classification.addAction('&FI', self.showFI)
self.menuBar().addMenu(self.menu_classification)
# Zoom and span buttons
self.menu_toggle = QtGui.QMenu("&Zoom&Span", self)
self.menu_toggle.addAction("Zoom", self.toggle_zoom, QtCore.Qt.CTRL + QtCore.Qt.Key_Z)
self.menu_toggle.addAction("Span", self.toggle_pan, QtCore.Qt.CTRL + QtCore.Qt.Key_S)
self.menu_toggle.addAction("Main View", self.toggle_view, QtCore.Qt.CTRL + QtCore.Qt.Key_U)
self.menuBar().addMenu(self.menu_toggle)
# Results
self.menu_results = QtGui.QMenu("&Results", self)
self.menu_results.addAction("Visualize .npy", self.show_results)
self.menuBar().addMenu(self.menu_results)
# We will deprecate this in a future.
self.menu_about = QtGui.QMenu("&About", self)
self.menu_about.addAction("How To Use this interface", self.pop_howtoMenu)
self.menu_about.addAction("Volcano-Seismology", self.pop_seismology)
self.menu_about.addAction("&About PICOSS", self.pop_about)
self.menuBar().addMenu(self.menu_about)
# Main selector for the trace.
self.selector = None
self.toolbar_trace = None
def pop_howtoMenu(self):
webbrowser.open(os.path.join("https://github.com/srsudo/picos/tree/master", "info", "howto"))
def pop_about(self):
webbrowser.open(os.path.join("https://github.com/srsudo/picos/tree/master", "info", "about.ipynb"))
def pop_seismology(self):
webbrowser.open(os.path.join("https://github.com/srsudo/picos/tree/master", "info", "seismology"))
def check_plots(self):
"""Function to axis plots."""
if self.ax is None:
pass
"""
Functions to connect with Other Menus
"""
def showFI(self):
"""
Function to load the segmented data and compute the results.
"""
fi_windows = picoss_func.WindowFI(self).show()
def show_isolated(self):
"""
Function to load the data from folder whilst updating the parent.
"""
isolated_menu = picoss_func.WindowLoadFolder(self).show()
def show_connection(self):
connection_menu = picoss_func.WindowConnection(self).show()
def show_components_menu(self):
component_menu = picoss_func.WindowComponents(self).show()
def show_other_stations(self):
"""Function to show other stations"""
stations_window = picoss_func.WindowStations(self).show()
def load_picking_results(self):
"""Function to load picking results from a previously processed file"""
stalta = picoss_func.WindowPicklingFile(self).show()
def show_results(self):
picoss_func.WindowVisualizeResults(self).show()
def show_STALTA(self):
sta_lta = picoss_func.WindowPickingOnFly(self).show()
def show_AMPA(self):
ampa = picoss_func.WindowAmpa(self).show()
def show_save_menu(self):
save_menu = picoss_func.WindowSaving(self).show()
def show_auxiliar_menu(self):
self.connection_menu = picoss_func.WindowFrequency(self)
self.connection_menu.show()
"""
End of Functions to connect with Other Menus
"""
def process_triggerfile(self, dictionary):
"""
Function that loads the previously pre-processed STA/LTA file as a dictionary file.
Notice that in order to make this function to work, the trace must be pre-processed using the CLI,
specifically, the make_stalta.sh script
"""
dict_loaded = picos_utils.load_processed_file(dictionary)
datos = obspy.core.trace.Trace(data=dict_loaded['data'])
self.active_trace = datos.copy()
self.stream = obspy.core.stream.Stream(traces=[self.active_trace])
self.on_of = dict_loaded['on_of']
self.fm = float(dict_loaded['fm']) # load the sampling_frequency.
self.plot_trigger(self.on_of)
def plot_trigger(self, on_of):
"""
Function that load the previously pre-processed STA/LTA file as a dictionary file.
Notice that in order to make this function work, it must be pre-processed using the included CLI,
specifically, the make_stalta.sh script
A own dictionary from another picking file, BUT with the following fields are also possible:
'data' -> (the seismic data we want to process as a Numpy Array)
'on of' -> an activation vector with triggers on and off times
'fm' -> the sampling frequency we are working with.
Args:
on_of : tuple
The tuple of activation times for the times
"""
time_Vector = np.linspace(0, self.active_trace.data.shape[0] / self.fm, num=self.active_trace.data.shape[0])
# create an axis
self.ax = self.figura_traza.add_subplot(111)
# discards the old graph
self.ax.cla()
self.ax.plot(time_Vector, self.active_trace)
self.ax.toolbar_trace = NavigationToolbar(self.canvas_traza, self)
self.selector = RectangleSelector(self.ax, self.line_select_callback,
drawtype='box', useblit=True, button=[1],
minspanx=5, minspany=5, spancoords='pixels',
interactive=True)
ymin, ymax = self.ax.get_ylim()
self.ax.vlines(on_of[:, 0] / self.fm, ymin, ymax, color='r', linewidth=1)
self.ax.axvline(self.first_ticked, color='green', linestyle='solid')
self.ax.axvline(self.last_ticked, color='magenta', linestyle='dashed')
self.canvas_traza.draw()
def plot_results_seconds(self, on_of):
"""
Function that load the already segmented events and plot it on the trace in SECONDS. Notice that in order to
make this function work, the events must be pre-segmented manually using PICOSS
A own dictionary from others segmentation file, BUT with the following fields are also possible:
'data' -> (the seismic data we want to process as a Numpy Array)
'on of' -> an activation vector with triggers on and off times IN SECONDS
'fm' -> the sampling frequency we are working with.
Args:
on_of : tuple The tuple of activation times for the times arrays in seconds
"""
time_Vector = np.linspace(0, self.active_trace.data.shape[0] / self.fm, num=self.active_trace.data.shape[0])
print(on_of)
# create an axis
self.ax = self.figura_traza.add_subplot(111)
# discards the old graph
self.ax.cla()
self.ax.plot(time_Vector, self.active_trace)
self.ax.toolbar_trace = NavigationToolbar(self.canvas_traza, self)
self.selector = RectangleSelector(self.ax, self.line_select_callback,
drawtype='box', useblit=True, button=[1],
minspanx=5, minspany=5, spancoords='pixels',
interactive=True)
ymin, ymax = self.ax.get_ylim()
self.ax.vlines(on_of[:, 0], ymin, ymax, color='g', linewidth=1)
self.ax.vlines(on_of[:, 1], ymin, ymax, color='magenta', linestyle='dashed', linewidth=1)
self.ax.axvline(self.first_ticked, color='green', linestyle='solid')
self.ax.axvline(self.last_ticked, color='magenta', linestyle='dashed')
self.canvas_traza.draw()
def peak_to_peak(self):
"""
Function to compute the peak_to_peak amplitude in a given trace.
Returns:
Numpy
The absolute value of the peak to peak amplitude
"""
value = np.asarray([self.x1, self.x2]) * self.fm
chunkPlot = self.active_trace.data[int(value[0]):int(value[1])]
return np.abs(np.amax(chunkPlot) - np.amin(chunkPlot))
def check_overlapping(self, v1, v2):
"""Function to check if the current values are overlapped or not. This function avoid segmentation of overlapped
events, thus yields robust datasets.
"""
if float(self.first_ticked) <= v1 <= float(self.last_ticked):
return True
elif float(self.first_ticked) <= round(v2, 2) <= float(self.last_ticked): # change v2 to x2
return True
else:
return False
def submit_current_window(self):
"""
This function is used to submit the current window to the segmentation table to store the segmented events
in the datasets.
"""
# check which radio button is selected
if self.current_label == "":
gui_functions.msg_box("Can not submit if no label is selected", "Please, select one or change window.")
else:
# Get the current information from the data
label = self.current_label
alumni = self.comments.text()
slider = self.qualityslider.value()
start, end = str(round(self.x1, 2)), str(round(self.x2, 2))
peakAmpl = str(round(self.peak_to_peak(), 2))
duration = str(abs(float(end) - float(start)))
# Check if is overlapping or not.
if self.check_overlapping(round(self.x1, 2), round(self.x2, 2)):
gui_functions.msg_box("Current window overlap previous one", "Please, move the sliding window.")
else:
currentRowCount = self.table_trace.rowCount()
self.table_trace.insertRow(currentRowCount)
self.table_trace.setItem(currentRowCount, 0, QtGui.QTableWidgetItem(start))
self.table_trace.setItem(currentRowCount, 1, QtGui.QTableWidgetItem(end))
self.table_trace.setItem(currentRowCount, 2, QtGui.QTableWidgetItem(label))
self.table_trace.setItem(currentRowCount, 3, QtGui.QTableWidgetItem(peakAmpl))
self.table_trace.setItem(currentRowCount, 4, QtGui.QTableWidgetItem(duration))
self.table_trace.setItem(currentRowCount, 5, QtGui.QTableWidgetItem(str(slider)))
self.table_trace.setItem(currentRowCount, 6, QtGui.QTableWidgetItem(alumni))
# now we add the last xticks window
self.first_ticked = start
self.last_ticked = end
# cleaning and redrawing traces.
new_job = multiprocessing.Process(target=self.clean_figures(), args=())
new_job.start()
redraw = multiprocessing.Process(target=self.redraw_trace(), args=())
redraw.start()
time.sleep(2)
gc.collect()
def handleButtonClicked(self, button):
"""
Function listener to handle when a button is clicked and modify the member variable to the current value
Args:
button: Qt.Button
The button the user has clicked
"""
value = button.text().split(" ")[-1]
self.current_label = value[1:-1]
def submit_current_trace(self):
"""Function to save the segmented events in a pickle file. Notice that if no segmented events are selected,
the data can not be saved.
"""
allRows = self.table_trace.rowCount()
if self.ax is None or allRows is 0:
gui_functions.msg_box("No current events are segmented", "Data can not be submitted")
else:
segmentation_table = []
segmentation_table.append((self.start_data, self.end_data))
for row in xrange(0, allRows):
start_toSave = str(self.table_trace.item(row, 0).text())
end_toSave = str(self.table_trace.item(row, 1).text())
label_toSave = str(self.table_trace.item(row, 2).text())
peak_toSave = str(self.table_trace.item(row, 3).text())
duration_toSave = str(self.table_trace.item(row, 4).text())
slides_toSave = str(self.table_trace.item(row, 5).text())
alumni_toSave = str(self.table_trace.item(row, 6).text())
# Created the segmentation table
new = [start_toSave, end_toSave, label_toSave, peak_toSave, duration_toSave, slides_toSave,
alumni_toSave]
segmentation_table.append(new)
self.toSave = "%s_%s_%s_%s_%s_%s_%s" % (self.network, self.station, self.channel, self.location,
self.start_data.year, self.day_of_the_year, self.duration)
self.segmentation_table = segmentation_table
# Clean the figures to free memory and allow further plotting.
self.clean_table()
self.clean_figures()
self.clean_points()
self.figura_traza.clf()
self.canvas_traza.draw()
self.show_save_menu()
gc.collect()
def clean_table(self):
"""function to clean the segmentation table"""
self.table_trace.clearContents()
self.table_trace.setRowCount(0)
def clean_points(self):
"""function to clean the selected ticked points"""
self.x1 = 0
self.x2 = 0
self.first_ticked = 0
self.last_ticked = 0
def clean_canvas(self):
self.figura_traza.clf()
self.canvas_traza.draw()
def clean_figures(self):
"""function to clean the figures and ticked points"""
self.figura_spectrograma.clf()
self.figura_fft.clf()
self.canvas_specgram.draw()
self.canvas_fft.draw()
def redraw_trace(self):
"""function to redraw the traces and ticked points"""
[self.ax.lines[-1].remove() for x in range(2)]
self.ax.axvline(self.first_ticked, color='green', linestyle='solid')
self.ax.axvline(self.last_ticked, color='magenta', linestyle='dashed')
self.canvas_traza.draw()
def reset_interactive(self):
"""function to reset the interactivity of the interface"""
mode = self.ax.get_navigate_mode()
if mode == "ZOOM":
self.toggle_zoom()
elif mode == "PAN":
self.toggle_pan()
else:
pass
def line_select_callback(self, eclick, erelease):
"""
Function to handle the click of the events, and modify the current traceback in the files
Args:
eclick : Qt.Event
Listener of mouse click of the event
erelease : Qt.Event
Release of the mouse click of the event
"""
# put the previous one to zero, just in case
self.x1, self.x2 = 0, 0
self.x1 = eclick.xdata
self.x2 = erelease.xdata
new_job = multiprocessing.Process(target=self.clean_figures(), args=())
new_job.start()
def toggle_zoom(self):
"""Set Zoom on"""
if self.ax is not None:
self.ax.toolbar_trace.zoom()
def toggle_pan(self):
"""Set Pan on"""
if self.ax is not None:
self.ax.toolbar_trace.pan()
def toggle_view(self):
"""Set main view again"""
if self.ax is not None:
self.ax.toolbar_trace.home()
def plot_from_file(self):
"""function to plot from file the loaded traces"""
self.stream = obspy.read(self.trace_loaded_filename)
if self.ax is not None:
self.clean_figures()
self.reset_interactive()
self.prepare_stream()
def prepare_stream(self, bandpass=None):
"""
This function handles the data preparation prior to depiction of the seismic trace. Notice that
local variables are linked here.
Args:
bandpass: Python Tuple (float)
The bandpass filter to apply to the seismic trace.
"""
# we need to make a copy to preserve original data to avoid Python numeric unstabilities. .
st = self.stream.copy()
if bandpass is None:
filtered = st.filter("highpass", freq=self.highpass_freq)
else:
filtered = st.filter("bandpass", freqmin=bandpass[0], freqmax=bandpass[1])
# Filter the trace as a single one, select the data, and clean it up.
self.trace_loaded = filtered.merge(method=0)
self.trace_loaded = self.trace_loaded._cleanup()
self.active_trace = self.trace_loaded[0]
if isinstance(self.trace_loaded, obspy.core.stream.Stream):
self.fm = self.active_trace.stats.sampling_rate
self.start_data = self.active_trace.stats.starttime
self.end_data = self.active_trace.stats.endtime
self.day_of_year = self.start_data.strftime('%j')
self.duration = int(math.ceil(self.end_data - self.start_data)) # duration in seconds, rounded up
self.ts = 1 / float(self.fm)
new_job = multiprocessing.Process(target=self.paint_trace(), args=())
new_job.start()
time.sleep(1)
else:
raise NotImplementedError
def plot_from_server(self):
"""Function to plot the loaded trace from the server and link the local variables to the downloaded data.
It links the local variables and apply a highpass filter automatically to erase background noise.
"""
filtered = self.trace_loaded.filter("highpass", freq=0.5)
self.trace_loaded = filtered.merge(method=1)
self.active_trace = self.trace_loaded[0]
self.fm = self.active_trace.stats.sampling_rate
self.ts = 1 / float(self.fm)
self.start_data = self.active_trace.stats.starttime
self.end_data = self.active_trace.stats.endtime
self.day_of_year = self.start_data.strftime('%j')
self.duration = int(math.ceil(self.end_data - self.start_data)) # duration in seconds, rounded up
new_job = multiprocessing.Process(target=self.paint_trace(), args=())
new_job.start()
time.sleep(1)
def paint_trace(self):
"""
Function that paints the trace within the main interface and links the interactivity with the main canvas.
"""
# init main tick buttons to initial zeroes.
self.x1, self.x2 = 0, 0
if self.ax is not None:
self.ax.cla()
# get the active trace
trace = self.active_trace.data
# Create the time vector in seconds.
time_Vector = np.linspace(0, len(trace) / self.fm, num=len(trace))
# create an axis
self.ax = self.figura_traza.add_subplot(111)
# discards the old graph
self.ax.cla()
self.ax.plot(time_Vector, trace)
self.ax.toolbar_trace = NavigationToolbar(self.canvas_traza, self)
# Get the selector
self.selector = RectangleSelector(self.ax, self.line_select_callback,
drawtype='box', useblit=True, button=[1],
minspanx=5, minspany=5, spancoords='pixels',
interactive=True)
self.ax.axvline(self.first_ticked, color='green', linestyle='solid')
self.ax.axvline(self.last_ticked, color='magenta', linestyle='dashed')
self.canvas_traza.draw()
gc.collect()
def paint_spectrogram(self):
"""
Function that paints the spectrogram within the main interface and links the interactivity with the main canvas.
"""
if (self.x1 <= 0) or (self.x2 >= len(self.active_trace.data)):
gui_functions.msg_box("No active window is selected",
"Please, select one point the trace and drag along the time axis.")
else:
if self.ax1 is not None:
self.ax1.cla()
self.figura_spectrograma.clf()
signal = self.active_trace.data
valor = np.asarray([self.x1, self.x2]) * self.fm
chunkPlot = signal[int(valor[0]):int(valor[1])]
self.ax1 = self.figura_spectrograma.add_subplot(111)
self.ax1.cla()
self.ax1.specgram(chunkPlot.flatten(), NFFT=128, Fs=self.fm, noverlap=64, cmap='jet')
self.ax1.set_ylim(0, 30)
self.canvas_specgram.draw()
def paint_fft(self):
"""
This function computes the FFT of the selected signal and plot it on the selected space for it.
"""
if (self.x1 <= 0) or (self.x2 >= len(self.active_trace.data)):
gui_functions.msg_box("No active window is selected",
"Please, select one point the trace and drag along the time axis.")
else:
if self.ax2 is not None:
self.ax2.cla()
signal = self.active_trace.data
value = np.asarray([self.x1, self.x2]) * self.fm
selected = signal[int(value[0]):int(value[1])]
# Check it with the masked arrays on some volcanoes.
if np.ma.isMaskedArray(selected):
xi = np.arange(len(selected))
mask = np.isfinite(selected)
selected = np.interp(xi, xi[mask], selected[mask])
y, frq = picos_utils.compute_fft(selected, self.fm)
self.ax2 = self.figura_fft.add_subplot(111)
self.ax2.cla()
self.ax2.set_xlabel('Freq (Hz)')
if self.loglogaxis.isChecked():
self.ax2.set_ylabel('log(|Y(freq)|)')
self.ax2.semilogy(frq[1:], np.abs(y)[1:], 'r')
self.canvas_fft.draw()
else:
self.ax2.set_ylabel('|Y(freq)|')
self.ax2.plot(frq[1:], abs(y)[1:], 'r')
self.ax2.set_xlim(0, 20)
self.canvas_fft.draw()
if __name__ == '__main__':
app = QtGui.QApplication(sys.argv)
mainWin = Picos()
ret = app.exec_()
sys.exit(ret)