-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcreate_cityscapes_submission.py
56 lines (44 loc) · 1.75 KB
/
create_cityscapes_submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torch.utils.data
import torchvision
import tqdm
import utils
if __name__ == '__main__':
# Load cfg and create components builder
cfg = utils.builder.load_cfg()
builder = utils.builder.Builder(cfg)
# Device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 1. Dataset
testset, testloader = builder.build_dataset('test')
# 2. Model
model = builder.build_model(testset.num_classes, pretrained=True).to(device)
model.eval()
model_name = cfg['model']['name']
amp_enabled = cfg['model']['amp_enabled']
print(f'Activated model: {model_name}')
# Load cities and image paths
cities = sorted(os.listdir(testset.images_dir))
image_paths = []
for image_path in testset.images:
image_path = image_path.replace('\\', '/').split('/')[-2:]
image_path = os.path.join(*image_path)
image_paths.append(image_path)
# Make result directories
step = 0
result_dir = os.path.join('submission', model_name.lower())
os.makedirs(result_dir, exist_ok=True)
for city in cities:
os.makedirs(os.path.join(result_dir, city), exist_ok=True)
# Save segmentation results
for images, targets in tqdm.tqdm(testloader, desc='Create submission'):
images, targets = images.to(device), targets.to(device)
with torch.cuda.amp.autocast(enabled=amp_enabled):
with torch.no_grad():
outputs = model(images)
outputs = torch.argmax(outputs, dim=1)
outputs = testset.decode_segmap_to_test_id(outputs)
# process per 1 batch
for i in range(targets.shape[0]):
torchvision.utils.save_image(outputs[i], os.path.join(result_dir, image_paths[step]))
step += 1