-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfolder2lmdb.py
70 lines (58 loc) · 2.25 KB
/
folder2lmdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
import lmdb
import pickle
import os.path as osp
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
def raw_reader(path):
with open(path, 'rb') as f:
bin_data = f.read()
return bin_data
def dump_pickle(obj):
"""
Serialize an object.
Returns :
The pickled representation of the object obj as a bytes object
"""
return pickle.dumps(obj)
def folder2lmdb(dpath, name="train_images", write_frequency=5000, num_workers=0):
directory = osp.expanduser(osp.join(dpath, name))
print("Loading dataset from %s" % directory)
dataset = ImageFolder(directory, loader=raw_reader)
data_loader = DataLoader(dataset, num_workers=num_workers)
lmdb_path = osp.join(dpath, "%s.lmdb" % name)
isdir = os.path.isdir(lmdb_path)
print("Generating LMDB to %s" % lmdb_path)
map_size = 30737418240 # this should be adjusted based on OS/db size
db = lmdb.open(lmdb_path, subdir=isdir,
map_size=map_size, readonly=False,
meminit=False, map_async=True)
print(len(dataset), len(data_loader))
txn = db.begin(write=True)
for idx, (data, label) in enumerate(data_loader):
# print(type(data), data)
image = data
label = label.numpy()
txn.put(u'{}'.format(idx).encode('ascii'), dump_pickle((image, label)))
if idx % write_frequency == 0:
print("[%d/%d]" % (idx, len(data_loader)))
txn.commit()
txn = db.begin(write=True)
# finish iterating through dataset
txn.commit()
keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
with db.begin(write=True) as txn:
txn.put(b'__keys__', dump_pickle(keys))
txn.put(b'__len__', dump_pickle(len(keys)))
print("Flushing database ...")
db.sync()
db.close()
if __name__=='__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--folder", type=str)
parser.add_argument('-s', '--split', type=str, default="train")
parser.add_argument('--out', type=str, default=".")
parser.add_argument('-p', '--procs', type=int, default=0)
args = parser.parse_args()
folder2lmdb(args.folder, num_workers=args.procs, name=args.split)