-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinpaint.py
153 lines (137 loc) · 4.65 KB
/
inpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python
u"""
inpaint.py
Written by Tyler Sutterley (05/2022)
Inpaint over missing data in a two-dimensional array using a
penalized least square method based on discrete cosine
transforms
INPUTS:
xs: input x-coordinates
ys: input y-coordinates
zs: input data
OPTIONS:
n: Number of iterations
Use 0 for nearest neighbors interpolation
s0: Smoothing
z0: Initial guess for input data
power: power for lambda function
epsilon: relaxation factor
REFERENCES:
D. Garcia, Robust smoothing of gridded data in one and higher
dimensions with missing values. Computational Statistics &
Data Analysis, 54(4), 1167--1178 (2010)
https://doi.org/10.1016/j.csda.2009.09.020
G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. J. Dolman,
A three-dimensional gap filling method for large geophysical
datasets: Application to global satellite soil moisture
observations, Environmental Modelling & Software,
30, 139--142 (2012)
https://doi.org/10.1016/j.envsoft.2011.10.015
UPDATE HISTORY:
Written 06/2022
"""
import numpy as np
import scipy.fftpack
import scipy.spatial
def inpaint(xs, ys, zs, n=100, s0=3, z0=None, power=2, epsilon=2):
"""
Inpaint over missing data in a two-dimensional array using a
penalized least square method based on discrete cosine transforms
[Garcia2010]_ [Wang2012]_
Parameters
----------
xs: float
input x-coordinates
ys: float
input y-coordinates
zs: float
input data
n: int, default 100
Number of iterations
Use 0 for nearest neighbors interpolation
s0: int, default 3
Smoothing
z0: float or NoneType, default None
Initial guess for input data
power: int, default 2
power for lambda function
epsilon: int, default 2
relaxation factor
References
----------
.. [Garcia2010] D. Garcia, Robust smoothing of gridded data
in one and higher dimensions with missing values.
Computational Statistics & Data Analysis, 54(4),
1167--1178 (2010). `doi: 10.1016/j.csda.2009.09.020
<https://doi.org/10.1016/j.csda.2009.09.020>`_
.. [Wang2012] G. Wang, D. Garcia, Y. Liu, R. de Jeu, and A. J. Dolman,
A three-dimensional gap filling method for large geophysical
datasets: Application to global satellite soil moisture
observations, Environmental Modelling & Software, 30,
139--142 (2012). `doi: 10.1016/j.envsoft.2011.10.015
<https://doi.org/10.1016/j.envsoft.2011.10.015>`_
"""
# find masked values
if isinstance(zs, np.ma.MaskedArray):
W = np.logical_not(zs.mask)
else:
W = np.isfinite(zs)
# no valid values can be found
if not np.any(W):
raise ValueError('No valid values found')
# dimensions of input grid
ny, nx = np.shape(zs)
# calculate lambda function
L = np.zeros((ny, nx))
L += np.broadcast_to(np.cos(np.pi*np.arange(ny)/ny)[:, None], (ny, nx))
L += np.broadcast_to(np.cos(np.pi*np.arange(nx)/nx)[None, :], (ny, nx))
LAMBDA = np.power(2.0*(2.0 - L), power)
# calculate initial values using nearest neighbors
if z0 is None:
z0 = nearest_neighbors(xs, ys, zs, W)
# copy data to new array with 0 values for mask
ZI = np.zeros((ny, nx))
ZI[W] = np.copy(z0[W])
# smoothness parameters
s = np.logspace(s0, -6, n)
for i in range(n):
# calculate discrete cosine transform
GAMMA = 1.0/(1.0 + s[i]*LAMBDA)
discos = GAMMA*scipy.fftpack.dctn(W*(ZI - z0) + z0, norm='ortho')
# update interpolated grid
z0 = epsilon*scipy.fftpack.idctn(discos, norm='ortho') + \
(1.0 - epsilon)*z0
# reset original values
z0[W] = np.copy(zs[W])
# return the inpainted grid
return z0
# PURPOSE: use nearest neighbors to form an initial guess
def nearest_neighbors(xs, ys, zs, W):
"""
Calculate nearest neighbors to form an initial for
missing values
Parameters
----------
xs: float
input x-coordinates
ys: float
input y-coordinates
zs: float
input data
W: bool
mask with valid points
"""
# computation of distance Matrix
# use scipy spatial KDTree routines
xgrid, ygrid = np.meshgrid(xs, ys)
tree = scipy.spatial.cKDTree(np.c_[xgrid[W], ygrid[W]])
# find nearest neighbors
masked = np.logical_not(W)
_, ii = tree.query(np.c_[xgrid[masked], ygrid[masked]], k=1)
# copy valid original values
z0 = np.zeros_like(zs)
z0[W] = np.copy(zs[W])
# copy nearest neighbors
z0[masked] = zs[W][ii]
# return initial guess
return z0