Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Usage]: How to make sure the timeout takes effect #14792

Open
1 task done
DayDayupupupup opened this issue Mar 14, 2025 · 0 comments
Open
1 task done

[Usage]: How to make sure the timeout takes effect #14792

DayDayupupupup opened this issue Mar 14, 2025 · 0 comments
Labels
usage How to use vllm

Comments

@DayDayupupupup
Copy link

Your current environment

The output of `python collect_env.py`
INFO 03-14 10:32:00 [__init__.py:256] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.3 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.31.4
Libc version: glibc-2.35

Python version: 3.12.9 (main, Feb  5 2025, 08:49:00) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.108-1.el7.elrepo.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A30
GPU 1: NVIDIA A30
GPU 2: NVIDIA A30
GPU 3: NVIDIA A30

Nvidia driver version: 535.104.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          112
On-line CPU(s) list:             0-111
Vendor ID:                       GenuineIntel
BIOS Vendor ID:                  Intel(R) Corporation
Model name:                      Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
BIOS Model name:                 Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
CPU family:                      6
Model:                           106
Thread(s) per core:              2
Core(s) per socket:              28
Socket(s):                       2
Stepping:                        6
Frequency boost:                 enabled
CPU max MHz:                     3100.0000
CPU min MHz:                     800.0000
BogoMIPS:                        4000.00
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid md_clear pconfig flush_l1d arch_capabilities
Virtualization:                  VT-x
L1d cache:                       2.6 MiB (56 instances)
L1i cache:                       1.8 MiB (56 instances)
L2 cache:                        70 MiB (56 instances)
L3 cache:                        84 MiB (2 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-27,56-83
NUMA node1 CPU(s):               28-55,84-111
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Enhanced IBRS, IBPB conditional, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

Versions of relevant libraries:
[pip3] flashinfer-python==0.2.1.post1+cu124torch2.5
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.1
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.49.0
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.4.dev413+gf53a0586
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	PIX	SYS	SYS	0-27,56-83	0		N/A
GPU1	PIX	 X 	SYS	SYS	0-27,56-83	0		N/A
GPU2	SYS	SYS	 X 	PIX	28-55,84-111	1		N/A
GPU3	SYS	SYS	PIX	 X 	28-55,84-111	1		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
NCCL_VERSION=2.17.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_VERSION=12.1.0
LD_LIBRARY_PATH=/usr/local/lib/python3.12/dist-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

How would you like to use vllm

Model: Qwen2.5-VL-3B-AWQ

CUDA_VISIBLE_DEVICES=3 VLLM_USE_V1=1 vllm serve qwen25-vl-3b-awq --trust-remote-code --max-model-len 10240 --gpu-memory-utilization 0.8 --limit-mm-per-prompt image=1 --no-enable-prefix-caching 

Client

TIMEOUT = 8 
long_timeout_client = httpx.Client(timeout=TIMEOUT)

def __init__(self):
       url = "localhost:8000"
       self.client = OpenAI(
           base_url=f"http://{url}/v1/",
           api_key="just_keep_me",
           timeout=TIMEOUT,  # 增加超时时间
           http_client=long_timeout_client,
       )
       self.model = self.client.models.list().data[0].id

def send_request(self, prompt, image_path):
       try:
           start_time = time.time()
           base64_image = encode_image(image_path)

           response = self.client.chat.completions.create(
               messages=[{
                   'role': 'user',
                   'content': [
                       {'type': 'text', 'text': prompt},
                       {'type': 'image_url', 'image_url': {
                           "url": f"data:image/jpeg;base64,{base64_image}"
                       }},
                   ]
               }],
               model=self.model,
               max_tokens=2048,
               temperature=0.1,
               top_p=0.6,
           )

           latency = (time.time() - start_time) * 1000  # 毫秒
           return response.choices[0].message.content.strip(), latency, None
       except openai.APITimeoutError as e:
           print(f"请求超时: {e}")

I set the timeout to 8 seconds with the parameters above, but some requests still took more than 10 seconds. What do I need to do to ensure that all requests are no longer than 8 seconds, and timeout requests are aborted?

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@DayDayupupupup DayDayupupupup added the usage How to use vllm label Mar 14, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
usage How to use vllm
Projects
None yet
Development

No branches or pull requests

1 participant