Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: TTFT Performance Regression in vLLM v0.7.0 Compared to v0.6.1.post2 #14845

Open
1 task done
asleepykitty opened this issue Mar 14, 2025 · 1 comment
Open
1 task done
Labels
bug Something isn't working

Comments

@asleepykitty
Copy link

Your current environment

The output of `python collect_env.py` on vLLM 0.7.0
INFO 03-14 21:24:53 __init__.py:183] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: CBL-Mariner/Linux (x86_64)
GCC version: (GCC) 11.2.0
Clang version: Could not collect
CMake version: version 3.21.4
Libc version: glibc-2.35

Python version: 3.10.14 (main, Jul 14 2024, 22:24:12) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1070-azure-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.8.89
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe

Nvidia driver version: 550.90.07
cuDNN version: Probably one of the following:
/usr/lib/libcudnn.so.8.9.5
/usr/lib/libcudnn_adv_infer.so.8.9.5
/usr/lib/libcudnn_adv_train.so.8.9.5
/usr/lib/libcudnn_cnn_infer.so.8.9.5
/usr/lib/libcudnn_cnn_train.so.8.9.5
/usr/lib/libcudnn_ops_infer.so.8.9.5
/usr/lib/libcudnn_ops_train.so.8.9.5
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        48 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               96
On-line CPU(s) list:                  0-95
Vendor ID:                            AuthenticAMD
Model name:                           AMD EPYC 7V13 64-Core Processor
CPU family:                           25
Model:                                1
Thread(s) per core:                   1
Core(s) per socket:                   48
Socket(s):                            2
Stepping:                             1
BogoMIPS:                             4890.88
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core invpcid_single vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip vaes vpclmulqdq rdpid fsrm
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            3 MiB (96 instances)
L1i cache:                            3 MiB (96 instances)
L2 cache:                             48 MiB (96 instances)
L3 cache:                             384 MiB (12 instances)
NUMA node(s):                         4
NUMA node0 CPU(s):                    0-23
NUMA node1 CPU(s):                    24-47
NUMA node2 CPU(s):                    48-71
NUMA node3 CPU(s):                    72-95
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Mitigation; safe RET, no microcode
Vulnerability Spec store bypass:      Vulnerable
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

Versions of relevant libraries:
[pip3] flake8==4.0.1.1
[pip3] mypy==1.11.2
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.570.86
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] sentence-transformers==3.0.0
[pip3] torch==2.5.1+cu124
[pip3] torchvision==0.20.1+cu124
[pip3] transformers==4.49.0
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.0
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    NIC0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV12    SYS     SYS     NODE    0-23    0               N/A
GPU1    NV12     X      SYS     SYS     SYS     24-47   1               N/A
GPU2    SYS     SYS      X      NV12    SYS     48-71   2               N/A
GPU3    SYS     SYS     NV12     X      SYS     72-95   3               N/A
NIC0    NODE    SYS     SYS     SYS      X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0

NVIDIA_VISIBLE_DEVICES=1
CUDA_VISIBLE_DEVICES=1
CUDA_VISIBLE_DEVICES=1
LD_LIBRARY_PATH=/home/coder/proxima-hosted-language-models/build/proxima-hosted-language-models/environments/development-venv/lib/python3.10/site-packages/cv2/../../lib64:/usr/local/cuda/lib64:/usr/local/cuda/compat/:/usr/local/cuda/targets/x86_64-linux/lib/:/export/apps/hadoop/latest/lib/native/:/usr/local/cuda/lib64:/usr/local/cuda/compat/:/usr/local/cuda/targets/x86_64-linux/lib/:/export/apps/hadoop/latest/lib/native/:/usr/local/cuda/lib64:/usr/local/cuda/compat/:/usr/local/cuda/targets/x86_64-linux/lib/:/export/apps/hadoop/latest/lib/native/:/usr/local/cuda/lib64:/usr/local/cuda/compat/:/usr/local/cuda/targets/x86_64-linux/lib/:/export/apps/hadoop/latest/lib/native/:
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Some changes on vLLM 0.6.1.post2
vllm==0.6.1.post2
torch==2.4.0+cu121
torchvision==0.19.0
vllm-flash-attn==2.6.1
xformers==0.0.27.post2
transformers==4.46.0
pydantic==2.9.0

🐛 Describe the bug

Summary
After upgrading from vLLM 0.6.1.post2 to vLLM 0.7.0, we observed a significant increase in TTFT. While e2e latency and throughput improved in v0.7.0, TTFT became 3x slower.

We use:

  • Our own model. The base model is Llama3 8B
  • QPS: 1.2
  • TTFT (v0.7.0): 0.39s
  • TTFT (v0.6.1.post2): 0.13s
  • Input Prompt: 4K tokens
  • Output Tokens: 100

Reproduction Steps

  1. Get TTFT on v0.7.0
  • Run vLLM server
vllm serve /export/content/data/tmp/custom_model_path/proxima/model_resources \
    --tokenizer /export/content/data/tmp/custom_model_path/proxima/tokenizer_resources \
    --tensor-parallel-size 1 \
    --max-num-batched-tokens 2048 \
    --gpu-memory-utilization 0.9 \
    --enable-chunked-prefill \
    --use-v2-block-manager \
    --trust-remote-code \
    --guided-decoding-backend outlines

  • Send requests to vLLM backend
python benchmark_serving.py --backend vllm --model (our model) --request-rate 1.2 --save-result
  1. Get TTFT on v0.6.1.post2
  • Run vLLM server
vllm serve /export/content/data/tmp/custom_model_path/proxima/model_resources \
    --tokenizer /export/content/data/tmp/custom_model_path/proxima/tokenizer_resources \
    --tensor-parallel-size 1 \
    --gpu-memory-utilization 0.9 \
    --enable-chunked-prefill \
    --use-v2-block-manager \
    --trust-remote-code \
    --guided-decoding-backend outlines

  • Send requests to vLLM backend
python benchmark_serving.py --backend vllm --model (our model) --request-rate 1.2 --save-result
  1. Compare TTFT results

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@asleepykitty asleepykitty added the bug Something isn't working label Mar 14, 2025
@russellb
Copy link
Member

There have been multiple releases since v0.7.0. Can you try the latest from main ? 0.8.0 is about to come out any day now.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants