Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: vLLM running on Unspecified Platform raises NotImplementedError when using podman/docker-compose #14954

Open
1 task done
BastianBN opened this issue Mar 17, 2025 · 7 comments
Labels
bug Something isn't working

Comments

@BastianBN
Copy link

BastianBN commented Mar 17, 2025

Your current environment

The output of `python collect_env.py` (ran on host, not in a container)
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Rocky Linux 9.5 (Blue Onyx) (x86_64)
GCC version: (GCC) 11.5.0 20240719 (Red Hat 11.5.0-2)
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.34

Python version: 3.9.21 (main, Dec  5 2024, 00:00:00)  [GCC 11.5.0 20240719 (Red Hat 11.5.0-2)] (64-bit runtime)
Python platform: Linux-5.14.0-427.35.1.el9_4.cloud.1.0.x86_64-x86_64-with-glibc2.34
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L4
Nvidia driver version: 550.90.12
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             4
On-line CPU(s) list:                0-3
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) CPU @ 2.20GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 2
Socket(s):                          1
Stepping:                           7
BogoMIPS:                           4400.42
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          64 KiB (2 instances)
L1i cache:                          64 KiB (2 instances)
L2 cache:                           2 MiB (2 instances)
L3 cache:                           38.5 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-3
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced / Automatic IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.3.0
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.49.0
[pip3] triton==3.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.3
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-3     0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

LD_LIBRARY_PATH=/home/USER/venv/lib/python3.9/site-packages/cv2/../../lib64:
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Hi,
I'm trying to run vLLM through podman-compose using the following docker_compose file but I get an "Unspecified platform" message and the pods crashes on startup after raising a NotImplementedError.
I have the same error whether using docker-compose or podman-compose as backends, using the right GPU definition for each (deploy: or device:)
I'm running all of this on a GCP Rocky Linux 9.5 VM. Also, it does work normally (CUDA is detected) when I run the container using podman run -d --name model2 --gpus all --ipc=host -p 8002:8000 --network monitoring-net vllm/vllm-openai:latest --model Qwen/Qwen2.5-Coder-3B-Instruct --gpu-memory-utilization 0.4 --api-key "<...>" --max-model-len 8192 --max-num-seq 64

I made a debug container that doesn't exit the pod when vllm crashes and tried nvidia-smi in but it told me the command doesn't exist, which feels somewhat weird ? I don't know what I can test

docker_compose.yml
# docker-compose.yaml
version: "3"

services:
  model2:
    device:
      - nvidia.com/gpu=all
    image: vllm/vllm-openai:latest
    container_name: model2
    command: >
      --model Qwen/Qwen2.5-Coder-3B-Instruct
      --gpu-memory-utilization 0.4
      --api-key <...>
      --max-model-len 8192
      --max-num-seq 64
      --tensor-parallel-size 1
      --device cuda
    ports:
      - "8002:8000"
    ipc: host
    networks:
      - monitoring-net
    environment:
      - NVIDIA_VISIBLE_DEVICES=ALL
      - CUDA_VISIBLE_DEVICES=ALL

  prometheus:
    image: prom/prometheus:latest
    container_name: prometheus
    command:
      - "--config.file=/etc/prometheus/prometheus.yml"
      - "--storage.tsdb.path=/prometheus"
      - "--web.enable-lifecycle"
    ports:
      - "9090:9090"
    volumes:
      - /home/USER/prometheus/config/prometheus.yaml:/etc/prometheus/prometheus.yml:Z
    networks:
      - monitoring-net

  grafana:
    image: grafana/grafana:latest
    container_name: grafana
    depends_on:
      - prometheus
    ports:
      - "3000:3000"
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=<...>
    networks:
      - monitoring-net

networks:
  monitoring-net:
    driver: bridge
Python/vLLM logs
INFO 03-17 05:44:54 __init__.py:194] No platform detected, vLLM is running on UnspecifiedPlatform
INFO 03-17 05:44:55 api_server.py:840] vLLM API server version 0.7.2
INFO 03-17 05:44:55 api_server.py:841] args: Namespace(host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key='K:i5UHbzkL#Ofv7r', lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, enable_reasoning=False, reasoning_parser=None, tool_call_parser=None, tool_parser_plugin='', model='Qwen/Qwen2.5-Coder-3B-Instruct', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=8192, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=None, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.4, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=64, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='cuda', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=False, scheduling_policy='fcfs', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', generation_config=None, override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, disable_log_requests=False, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False)
INFO 03-17 05:44:55 api_server.py:206] Started engine process with PID 11
INFO 03-17 05:44:59 __init__.py:194] No platform detected, vLLM is running on UnspecifiedPlatform
INFO 03-17 05:45:03 config.py:542] This model supports multiple tasks: {'score', 'embed', 'generate', 'classify', 'reward'}. Defaulting to 'generate'.
Traceback (most recent call last):
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 911, in <module>
    uvloop.run(run_server(args))
  File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 109, in run
    return __asyncio.run(
           ^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/asyncio/runners.py", line 195, in run
    return runner.run(main)
           ^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
    return self._loop.run_until_complete(task)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
  File "/usr/local/lib/python3.12/dist-packages/uvloop/__init__.py", line 61, in wrapper
    return await main
           ^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 875, in run_server
    async with build_async_engine_client(args) as engine_client:
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 136, in build_async_engine_client
    async with build_async_engine_client_from_engine_args(
               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__
    return await anext(self.gen)
           ^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 217, in build_async_engine_client_from_engine_args
    engine_config = engine_args.create_engine_config()
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/arg_utils.py", line 1276, in create_engine_config
    config = VllmConfig(
             ^^^^^^^^^^^
  File "<string>", line 19, in __init__
  File "/usr/local/lib/python3.12/dist-packages/vllm/config.py", line 3206, in __post_init__
    self.model_config.verify_async_output_proc(self.parallel_config,
  File "/usr/local/lib/python3.12/dist-packages/vllm/config.py", line 677, in verify_async_output_proc
    if not current_platform.is_async_output_supported(self.enforce_eager):
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/platforms/interface.py", line 201, in is_async_output_supported
    raise NotImplementedError
NotImplementedError
INFO 03-17 05:45:13 config.py:542] This model supports multiple tasks: {'score', 'classify', 'generate', 'reward', 'embed'}. Defaulting to 'generate'.
ERROR 03-17 05:45:13 engine.py:389] 
Traceback (most recent call last):
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 380, in run_mp_engine
    engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 118, in from_engine_args
    engine_config = engine_args.create_engine_config(usage_context)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/arg_utils.py", line 1276, in create_engine_config
    config = VllmConfig(
             ^^^^^^^^^^^
  File "<string>", line 19, in __init__
  File "/usr/local/lib/python3.12/dist-packages/vllm/config.py", line 3206, in __post_init__
    self.model_config.verify_async_output_proc(self.parallel_config,
  File "/usr/local/lib/python3.12/dist-packages/vllm/config.py", line 677, in verify_async_output_proc
    if not current_platform.is_async_output_supported(self.enforce_eager):
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/platforms/interface.py", line 201, in is_async_output_supported
    raise NotImplementedError
NotImplementedError
Process SpawnProcess-1:
Traceback (most recent call last):
  File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 391, in run_mp_engine
    raise e
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 380, in run_mp_engine
    engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 118, in from_engine_args
    engine_config = engine_args.create_engine_config(usage_context)
                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/engine/arg_utils.py", line 1276, in create_engine_config
    config = VllmConfig(
             ^^^^^^^^^^^
  File "<string>", line 19, in __init__
  File "/usr/local/lib/python3.12/dist-packages/vllm/config.py", line 3206, in __post_init__
    self.model_config.verify_async_output_proc(self.parallel_config,
  File "/usr/local/lib/python3.12/dist-packages/vllm/config.py", line 677, in verify_async_output_proc
    if not current_platform.is_async_output_supported(self.enforce_eager):
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/usr/local/lib/python3.12/dist-packages/vllm/platforms/interface.py", line 201, in is_async_output_supported
    raise NotImplementedError
NotImplementedError

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@BastianBN BastianBN added the bug Something isn't working label Mar 17, 2025
@BastianBN BastianBN changed the title [Bug]: vLLM running on Unspecified Platform and NotImplementedError when using podman-compose [Bug]: vLLM running on Unspecified Platform raises NotImplementedError when using podman-compose Mar 17, 2025
@Prajapati-Deepak
Copy link

i'm also facing same issues

@Prajapati-Deepak
Copy link

`INFO 03-17 06:04:15 init.py:211] No platform detected, vLLM is running on UnspecifiedPlatform
INFO 03-17 06:04:15 api_server.py:912] vLLM API server version 0.7.3
INFO 03-17 06:04:15 api_server.py:913] args: Namespace(subparser='serve', model_tag='Qwen/Qwen2.5-3B', config='', host=None, port=8000, uvicorn_log_level='info', allow_credentials=False, allowed_origins=[''], allowed_methods=[''], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, chat_template_content_format='auto', response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, enable_request_id_headers=False, enable_auto_tool_choice=False, enable_reasoning=False, reasoning_parser=None, tool_call_parser=None, tool_parser_plugin='', model='Qwen/Qwen2.5-3B', task='auto', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, allowed_local_media_path=None, download_dir=None, load_format='auto', config_format=<ConfigFormat.AUTO: 'auto'>, dtype='auto', kv_cache_dtype='auto', max_model_len=None, guided_decoding_backend='xgrammar', logits_processor_pattern=None, model_impl='auto', distributed_executor_backend=None, pipeline_parallel_size=1, tensor_parallel_size=2, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=None, enable_prefix_caching=True, disable_sliding_window=False, use_v2_block_manager=True, num_lookahead_slots=0, seed=0, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.8, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_partial_prefills=1, max_long_partial_prefills=1, long_prefill_token_threshold=0, max_num_seqs=None, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, hf_overrides=None, enforce_eager=False, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, limit_mm_per_prompt=None, mm_processor_kwargs=None, disable_mm_preprocessor_cache=False, enable_lora=False, enable_lora_bias=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='cuda', num_scheduler_steps=1, multi_step_stream_outputs=True, scheduler_delay_factor=0.0, enable_chunked_prefill=True, speculative_model=None, speculative_model_quantization=None, num_speculative_tokens=None, speculative_disable_mqa_scorer=False, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint=None, collect_detailed_traces=None, disable_async_output_proc=True, scheduling_policy='fcfs', scheduler_cls='vllm.core.scheduler.Scheduler', override_neuron_config=None, override_pooler_config=None, compilation_config=None, kv_transfer_config=None, worker_cls='auto', generation_config=None, override_generation_config=None, enable_sleep_mode=False, calculate_kv_scales=False, additional_config=None, disable_log_requests=True, max_log_len=None, disable_fastapi_docs=False, enable_prompt_tokens_details=False, dispatch_function=<function ServeSubcommand.cmd at 0x7f19ef925620>)
INFO 03-17 06:04:15 api_server.py:209] Started engine process with PID 77
INFO 03-17 06:04:19 init.py:211] No platform detected, vLLM is running on UnspecifiedPlatform
INFO 03-17 06:04:22 config.py:549] This model supports multiple tasks: {'embed', 'score', 'generate', 'classify', 'reward'}. Defaulting to 'generate'.
INFO 03-17 06:04:22 config.py:1382] Defaulting to use mp for distributed inference
INFO 03-17 06:04:22 config.py:1555] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 03-17 06:04:24 config.py:549] This model supports multiple tasks: {'reward', 'generate', 'embed', 'classify', 'score'}. Defaulting to 'generate'.
INFO 03-17 06:04:24 config.py:1382] Defaulting to use mp for distributed inference
INFO 03-17 06:04:24 config.py:1555] Chunked prefill is enabled with max_num_batched_tokens=2048.
INFO 03-17 06:04:25 llm_engine.py:234] Initializing a V0 LLM engine (v0.7.3) with config: model='Qwen/Qwen2.5-3B', speculative_config=None, tokenizer='Qwen/Qwen2.5-3B', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=32768, download_dir=None, load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='xgrammar'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=Qwen/Qwen2.5-3B, num_scheduler_steps=1, multi_step_stream_outputs=True, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, disable_mm_preprocessor_cache=False, mm_processor_kwargs=None, pooler_config=None, compilation_config={"splitting_ops":[],"compile_sizes":[],"cudagraph_capture_sizes":[256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],"max_capture_size":256}, use_cached_outputs=True,
WARNING 03-17 06:04:32 multiproc_worker_utils.py:300] Reducing Torch parallelism from 64 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
INFO 03-17 06:04:32 custom_cache_manager.py:19] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager
ERROR 03-17 06:04:32 engine.py:400] not enough values to unpack (expected 2, got 1)
ERROR 03-17 06:04:32 engine.py:400] Traceback (most recent call last):
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 391, in run_mp_engine
ERROR 03-17 06:04:32 engine.py:400] engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 124, in from_engine_args
ERROR 03-17 06:04:32 engine.py:400] return cls(ipc_path=ipc_path,
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 76, in init
ERROR 03-17 06:04:32 engine.py:400] self.engine = LLMEngine(*args, **kwargs)
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/engine/llm_engine.py", line 273, in init
ERROR 03-17 06:04:32 engine.py:400] self.model_executor = executor_class(vllm_config=vllm_config, )
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 271, in init
ERROR 03-17 06:04:32 engine.py:400] super().init(*args, **kwargs)
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 52, in init
ERROR 03-17 06:04:32 engine.py:400] self._init_executor()
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/mp_distributed_executor.py", line 123, in _init_executor
ERROR 03-17 06:04:32 engine.py:400] self._run_workers("init_worker", all_kwargs)
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers
ERROR 03-17 06:04:32 engine.py:400] driver_worker_output = run_method(self.driver_worker, sent_method,
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/utils.py", line 2196, in run_method
ERROR 03-17 06:04:32 engine.py:400] return func(*args, **kwargs)
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 558, in init_worker
ERROR 03-17 06:04:32 engine.py:400] worker_class = resolve_obj_by_qualname(
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] File "/usr/local/lib/python3.12/dist-packages/vllm/utils.py", line 1876, in resolve_obj_by_qualname
ERROR 03-17 06:04:32 engine.py:400] module_name, obj_name = qualname.rsplit(".", 1)
ERROR 03-17 06:04:32 engine.py:400] ^^^^^^^^^^^^^^^^^^^^^
ERROR 03-17 06:04:32 engine.py:400] ValueError: not enough values to unpack (expected 2, got 1)
Process SpawnProcess-1:
ERROR 03-17 06:04:32 multiproc_worker_utils.py:124] Worker VllmWorkerProcess pid 351 died, exit code: -15
INFO 03-17 06:04:32 multiproc_worker_utils.py:128] Killing local vLLM worker processes
Traceback (most recent call last):
File "/usr/lib/python3.12/multiprocessing/process.py", line 314, in _bootstrap
self.run()
File "/usr/lib/python3.12/multiprocessing/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 402, in run_mp_engine
raise e
File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 391, in run_mp_engine
engine = MQLLMEngine.from_engine_args(engine_args=engine_args,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 124, in from_engine_args
return cls(ipc_path=ipc_path,
^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/engine/multiprocessing/engine.py", line 76, in init
self.engine = LLMEngine(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/engine/llm_engine.py", line 273, in init
self.model_executor = executor_class(vllm_config=vllm_config, )
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 271, in init
super().init(*args, **kwargs)
File "/usr/local/lib/python3.12/dist-packages/vllm/executor/executor_base.py", line 52, in init
self._init_executor()
File "/usr/local/lib/python3.12/dist-packages/vllm/executor/mp_distributed_executor.py", line 123, in _init_executor
self._run_workers("init_worker", all_kwargs)
File "/usr/local/lib/python3.12/dist-packages/vllm/executor/mp_distributed_executor.py", line 185, in _run_workers
driver_worker_output = run_method(self.driver_worker, sent_method,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/utils.py", line 2196, in run_method
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 558, in init_worker
worker_class = resolve_obj_by_qualname(
^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/utils.py", line 1876, in resolve_obj_by_qualname
module_name, obj_name = qualname.rsplit(".", 1)
^^^^^^^^^^^^^^^^^^^^^
ValueError: not enough values to unpack (expected 2, got 1)
Traceback (most recent call last):
File "/usr/local/bin/vllm", line 10, in
sys.exit(main())
^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/cli/main.py", line 73, in main
args.dispatch_function(args)
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/cli/serve.py", line 34, in cmd
uvloop.run(run_server(args))
File "/usr/local/lib/python3.12/dist-packages/uvloop/init.py", line 109, in run
return __asyncio.run(
^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 195, in run
return runner.run(main)
^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/asyncio/runners.py", line 118, in run
return self._loop.run_until_complete(task)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "uvloop/loop.pyx", line 1518, in uvloop.loop.Loop.run_until_complete
File "/usr/local/lib/python3.12/dist-packages/uvloop/init.py", line 61, in wrapper
return await main
^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 947, in run_server
async with build_async_engine_client(args) as engine_client:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/contextlib.py", line 210, in aenter
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 139, in build_async_engine_client
async with build_async_engine_client_from_engine_args(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/lib/python3.12/contextlib.py", line 210, in aenter
return await anext(self.gen)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/entrypoints/openai/api_server.py", line 233, in build_async_engine_client_from_engine_args
raise RuntimeError(
RuntimeError: Engine process failed to start. See stack trace for the root cause.```

@Symfomany
Copy link

+1

@BastianBN BastianBN changed the title [Bug]: vLLM running on Unspecified Platform raises NotImplementedError when using podman-compose [Bug]: vLLM running on Unspecified Platform raises NotImplementedError when using podman/docker-compose Mar 17, 2025
@yankay
Copy link

yankay commented Mar 18, 2025

HI @BastianBN

If you cannot run nvidia-smi with the container, it means the container cannot use GPU.

You can follow the https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html to config the podman, and then ensure the sample cuda workload can be run successfully.

And then the compose.yaml needs to add the --security-opt=label=disable for podman.

@BastianBN
Copy link
Author

HI @BastianBN

If you cannot run nvidia-smi with the container, it means the container cannot use GPU.

You can follow the https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html to config the podman, and then ensure the sample cuda workload can be run successfully.

And then the compose.yaml needs to add the --security-opt=label=disable for podman.

Hello @yankay
I just tried to add the security-opt option but it doesn't seem to work any better. The weird thing is that I cannot use the GPU only when I start the container using podman compose up -d, it does work when I do podman run with the exact same image and arguments given to vLLM. If that was an nvidia drivers problem, it probably wouldn't work even with podman run, right ?

@yankay
Copy link

yankay commented Mar 20, 2025

It seems the same as containers/podman#25196. If it's a podman issue, it's better to discussit in the Podman issue.

@tuliren
Copy link

tuliren commented Mar 20, 2025

It seems the same as containers/podman#25196. If it's a podman issue, it's better to discussit in the Podman issue.

No, this is not a podman only issue. I use plain docker / docker compose and have run into the same error.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

5 participants