Skip to content

Releases: BerriAI/litellm

v1.24.3

16 Feb 07:10
b96c0e5
Compare
Choose a tag to compare

What's Changed

[FEAT] Track LLM spend per team by @ishaan-jaff in #1996

Screenshot 2024-02-15 at 10 51 54 PM

[FEAT] Proxy - use custom API endpoints as callbacks by @ishaan-jaff in #1986

docs: https://docs.litellm.ai/docs/proxy/logging#custom-callback-apis-async

[FEAT] Track team_id in langfuse tags, callback metadata by @ishaan-jaff in #1993

Screenshot 2024-02-15 at 8 58 29 PM

[Fix] Admin UI Chat Tab by @ishaan-jaff in #1997

Full Changelog: v1.24.1...v1.24.3

v1.24.1

16 Feb 06:48
9b60ef9
Compare
Choose a tag to compare

What's Changed

  • feat(proxy_server.py): /team/new and /team/info endpoints for team management by @krrishdholakia in #1979
  • Implements aioboto3 for sagemaker by @krrishdholakia in #1952
  • Update utils.py: switched from pkg_resources to importlib.resources for filename stored in the os.environ(TIKTOKEN_CACHE_DIR) by @sorokine in #1947
  • fix(redis.py): fix instantiating redis client from url by @krrishdholakia in #1989
  • Add support for Vertex AI custom models deployed on private endpoint by @RenaLu in #1916

New Contributors

Full Changelog: v1.23.16...v1.24.1

v1.23.16

15 Feb 05:19
Compare
Choose a tag to compare

👉 support for /moderations endpoint

💥 New models text-moderation-stable, text-moderation-007

⚡️ Admin UI - New Support for Generic SSO Providers Try here: https://docs.litellm.ai/docs/proxy/ui#setup-ssoauth-for-ui

🛠️ Fixes for using models access groups https://docs.litellm.ai/docs/proxy/virtual_keys#grant-access-to-new-model

Group 201

What's Changed

New Contributors

Full Changelog: v1.23.15...v1.23.16

v1.23.15

14 Feb 20:23
Compare
Choose a tag to compare

What's Changed

Full Changelog: v1.23.14...v1.23.15

v1.23.14

14 Feb 06:21
Compare
Choose a tag to compare

Allow your team to test 100+ LLMs, control LLM access by User ID 👉 Try out our new Chat playground

litellmuichat

⚡️ Fixes for s3 Cache - when proxy disconnects

⚒️ fix for logging tags to Langfuse

📖 Updated docs on using litellm GHCR docker container

What's Changed

Full Changelog: v1.23.12...v1.23.14

v1.23.12

13 Feb 15:37
Compare
Choose a tag to compare

🚀 LiteLLM Proxy Server v1.23.11 - Allow your team to create keys for Azure, OpenAI, Bedrock, Sagemaker, Gemini and call 100+ LLMs

litellm_model_info

What's Changed

New Contributors

Full Changelog: v1.23.10...v1.23.12

v1.23.10

12 Feb 17:39
Compare
Choose a tag to compare

What's Changed

Full Changelog: v1.23.9...v1.23.10

v1.23.9

11 Feb 03:16
Compare
Choose a tag to compare

What's Changed

Full Changelog: v1.23.8...v1.23.9

v1.23.8

10 Feb 17:14
Compare
Choose a tag to compare

Full Changelog: v1.23.7...v1.23.8

v1.23.7

10 Feb 04:59
e977685
Compare
Choose a tag to compare

1. Bedrock Set Timeouts

Usage - litellm.completion

response = litellm.completion(
    model="bedrock/anthropic.claude-instant-v1",
    timeout=0.01,
    messages=[{"role": "user", "content": "hello, write a 20 pg essay"}],
)

Usage on Proxy config.yaml

model_list:
  - model_name: BEDROCK_GROUP
    litellm_params:
      model: bedrock/cohere.command-text-v14
      timeout: 0.0001

2 View total proxy spend / budget

Screenshot 2024-02-09 at 11 50 23 AM

3. Use LlamaIndex with Proxy - Support azure deployments for /embeddings

Send Embedding requests like this

http://0.0.0.0:4000/openai/deployments/azure-embedding-model/embeddings?api-version=2023-07-01-preview

This allow users to use llama index AzureOpenAI with LiteLLM

Use LlamaIndex with LiteLLM Proxy

import os, dotenv

from dotenv import load_dotenv

load_dotenv()

from llama_index.llms import AzureOpenAI
from llama_index.embeddings import AzureOpenAIEmbedding
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext

llm = AzureOpenAI(
    engine="azure-gpt-3.5",
    temperature=0.0,
    azure_endpoint="http://0.0.0.0:4000",
    api_key="sk-1234",
    api_version="2023-07-01-preview",
)

embed_model = AzureOpenAIEmbedding(
    deployment_name="azure-embedding-model",
    azure_endpoint="http://0.0.0.0:4000",
    api_key="sk-1234",
    api_version="2023-07-01-preview",
)


# response = llm.complete("The sky is a beautiful blue and")
# print(response)

documents = SimpleDirectoryReader("llama_index_data").load_data()
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)

query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)

Full Changelog: v1.23.5...v1.23.7