by Jiaan Luo*, Feng Hong*, Jiangchao Yao, Bo Han, Ya Zhang, Yanfeng Wang at SJTU, Shanghai AI Lab, and HKBU.
@inproceedings{
luo2024revive,
title={Revive Re-weighting in Imbalanced Learning by Density Ratio Estimation},
author={Luo Jiaan and Hong Feng and Yao Jiangchao and Han Bo and Zhang Ya and Wang Yanfeng},
booktitle={NeurIPS},
year={2024}
}
The project has been tested under the following environment settings:
- OS: Ubuntu 18.04.5 LTS
- GPU: NVIDIA GeForce RTX 3090
- CUDA: 11.7
- Cudatoolkit: 11.0.221
- Python: 3.8.18
- PyTorch: 1.13.1
Structure
./utils
: data augmentation, model management and evaluation./models
: backbone models./data
: datasets (automatically downloaded)main.py
: main function scriptimbalance_cifar.py
: custom datasets script
Run
python main.py --gpu 0 --imb_type exp --dataset cifar10 --imb_factor 0.01
Evaluate
python main.py --gpu 0 --evaluate --resume path/to/saved/model --dataset cifar10 --imb_factor 0.01
Implement Other Datasets
- Add raw data to
./[_data_name]
. - Create a imbalanced version of the dataset in
./data
. (Optional) - Create a dataloader in
./utils
.
If you have any problem with this code, please feel free to contact luojiaan@sjtu.edu.cn.