Skip to content

PyTorch implementation for "Revive Re-weighting in Imbalanced Learning by Density Ratio Estimation"

License

Notifications You must be signed in to change notification settings

GoodMorningPeter/RDR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Revive Re-weighting in Imbalanced Learning by Density Ratio Estimation

Paper Github

by Jiaan Luo*, Feng Hong*, Jiangchao Yao, Bo Han, Ya Zhang, Yanfeng Wang at SJTU, Shanghai AI Lab, and HKBU.

Citation

@inproceedings{
luo2024revive,
title={Revive Re-weighting in Imbalanced Learning by Density Ratio Estimation},
author={Luo Jiaan and Hong Feng and Yao Jiangchao and Han Bo and Zhang Ya and Wang Yanfeng},
booktitle={NeurIPS},
year={2024}
}

Environment

The project has been tested under the following environment settings:

  • OS: Ubuntu 18.04.5 LTS
  • GPU: NVIDIA GeForce RTX 3090
  • CUDA: 11.7
  • Cudatoolkit: 11.0.221
  • Python: 3.8.18
  • PyTorch: 1.13.1

Content

Structure

  • ./utils: data augmentation, model management and evaluation
  • ./models: backbone models
  • ./data: datasets (automatically downloaded)
  • main.py: main function script
  • imbalance_cifar.py: custom datasets script

Run

python main.py --gpu 0 --imb_type exp --dataset cifar10 --imb_factor 0.01

Evaluate

python main.py --gpu 0 --evaluate --resume path/to/saved/model --dataset cifar10 --imb_factor 0.01

Implement Other Datasets

  • Add raw data to ./[_data_name].
  • Create a imbalanced version of the dataset in ./data. (Optional)
  • Create a dataloader in ./utils.

Contact

If you have any problem with this code, please feel free to contact luojiaan@sjtu.edu.cn.

About

PyTorch implementation for "Revive Re-weighting in Imbalanced Learning by Density Ratio Estimation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages