Raspberry Pi 4 (2GB)due to performance issue decided to go with Jetson nano 4GB - B01Raspberry Pi 4 Aluminum Heat Sink Case with Double Fans LINKthis is not compatible with jetson nano so added 4 Sqcm 5v colling fan32gb SanDisk Extremeupgraded to USB SSD 256 gb- Raspberry Pi Camera V2 and IMX219-77 8MP Camera with 77° FOV
- Car Chassis Transparent 4Wd LINK
8Ybj-48 Dc 5V 4 Phase 5 Wire Stepper Motor With Uln2003 Driver LINK- hc sr04 ultrasonic sensor
- Mi Pocket Power Bank Pro 10000mAh
- Arduino Uno
- DC motor arduino l293d shield
- pca9685 servo driver
- Expansion shield for Arduino Nano LINK
- sg90 servo
- 3d Printed parts
tp-link dual band Wireless adapter LINK
Raspberry pi 4 (2gb) has more power full and newer cpu (Broadcom BCM2711 quad-core 64-bit ARM Cortex-A72 CPU @ 1.5 GHz) compare to Jetson nano (quad-core ARM Cortex-A57 64-bit @ 1.42 GHz) but Jetson nano has power full gpu NVIDIA Maxwell architecture with 128 NVIDIA CUDA® cores good enough to process object detection at 30fps for more details about Jetson Nano 4gb see here LINK
We need TensorRT-accelerated deep learning networks for image recognition, object detection with localization (i.e. bounding boxes), and semantic segmentation. This inferencing library is intended to be run on the Jetson, and includes support for both C++ and Python. Various pre-trained DNN models are automatically downloaded to get you up and running quickly.
follow the guideline mention below link to install required packages
https://github.com/dusty-nv/jetson-inference/blob/master/docs/building-repo-2.md
Prerequisite:
https://qengineering.eu/install-opencv-4.5-on-jetson-nano.html
$ sudo apt-get update
$ sudo apt-get upgrade
$ sudo apt-get install nano
$ sudo apt-get install dphys-swapfile
$ sudo nano /etc/dphys-swapfile
$ sudo reboot.
$ sudo sh -c "echo '/usr/local/cuda/lib64' >> /etc/ld.so.conf.d/nvidia-tegra.conf"
$ sudo ldconfig
$ sudo apt-get install build-essential cmake git unzip pkg-config
$ sudo apt-get install libjpeg-dev libpng-dev libtiff-dev
$ sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev
$ sudo apt-get install libgtk2.0-dev libcanberra-gtk*
$ sudo apt-get install python3-dev python3-numpy python3-pip
$ sudo apt-get install libxvidcore-dev libx264-dev libgtk-3-dev
$ sudo apt-get install libtbb2 libtbb-dev libdc1394-22-dev
$ sudo apt-get install libv4l-dev v4l-utils
$ sudo apt-get install libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev
$ sudo apt-get install libavresample-dev libvorbis-dev libxine2-dev
$ sudo apt-get install libfaac-dev libmp3lame-dev libtheora-dev
$ sudo apt-get install libopencore-amrnb-dev libopencore-amrwb-dev
$ sudo apt-get install libopenblas-dev libatlas-base-dev libblas-dev
$ sudo apt-get install liblapack-dev libeigen3-dev gfortran
$ sudo apt-get install libhdf5-dev protobuf-compiler
$ sudo apt-get install libprotobuf-dev libgoogle-glog-dev libgflags-dev
$ cd ~
$ wget -O opencv.zip https://github.com/opencv/opencv/archive/4.5.2.zip
$ wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.5.2.zip
$ unzip opencv.zip
$ unzip opencv_contrib.zip
$ mv opencv-4.5.2 opencv
$ mv opencv_contrib-4.5.2 opencv_contrib
$ rm opencv.zip
$ rm opencv_contrib.zip
$ cd ~/opencv
$ mkdir build
$ cd build
$ cmake -D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr \
-D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \
-D EIGEN_INCLUDE_PATH=/usr/include/eigen3 \
-D WITH_OPENCL=OFF \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN=5.3 \
-D CUDA_ARCH_PTX="" \
-D WITH_CUDNN=ON \
-D WITH_CUBLAS=ON \
-D ENABLE_FAST_MATH=ON \
-D CUDA_FAST_MATH=ON \
-D OPENCV_DNN_CUDA=ON \
-D ENABLE_NEON=ON \
-D WITH_QT=OFF \
-D WITH_OPENMP=ON \
-D WITH_OPENGL=ON \
-D BUILD_TIFF=ON \
-D WITH_FFMPEG=ON \
-D WITH_GSTREAMER=ON \
-D WITH_TBB=ON \
-D BUILD_TBB=ON \
-D BUILD_TESTS=OFF \
-D WITH_EIGEN=ON \
-D WITH_V4L=ON \
-D WITH_LIBV4L=ON \
-D OPENCV_ENABLE_NONFREE=ON \
-D INSTALL_C_EXAMPLES=OFF \
-D INSTALL_PYTHON_EXAMPLES=OFF \
-D BUILD_opencv_python3=TRUE \
-D OPENCV_GENERATE_PKGCONFIG=ON \
-D BUILD_EXAMPLES=OFF ..
$ make -j4
$ sudo rm -r /usr/include/opencv4/opencv2
$ sudo make install
$ sudo ldconfig
$ make clean
$ sudo apt-get update
$ sudo /etc/init.d/dphys-swapfile stop
$ sudo apt-get remove --purge dphys-swapfile
$ sudo rm -rf ~/opencv
$ sudo rm -rf ~/opencv_contrib
$ sudo -H pip install -U jetson-stats
$ sudo reboot
$ jtop
https://gstreamer.freedesktop.org/download/
MinGW 64-bit -> 1.18.4 runtime installer
edit environment variable and add gstreamer bin path F:\gstreamer\1.0\mingw_x86_64\bin
in command line Terminal Execute->
gst-launch-1.0 -v udpsrc port=1234 caps = "application/x-rtp, media=(string)video, clock-rate=(int)90000, encoding-name=(string)H264, payload=(int)96" ! rtph264depay ! decodebin ! videoconvert ! autovideosink
sudo nano .bashrc
add below lines
export LD_PRELOAD = /usr/lib/aarch64-linux-gnu/libgomp.so.1
export DISPLAY=:0.0
sudo usermod -a -G dialout $USER