Skip to content

WindowsNT/VisualDML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Visual DML

A tool to visually-design DirectML operators that run in the GPU and to create and train a neural network with it. Uses my DirectML Lib.

Download also binary from Windows App Store

Features for DirectML Design

  • Undo, Redo, Save, Load, Multiple Sets
  • Multiple Visible/Active DirectML operators
  • Direct2D Drawing
  • Memory Sharing
  • Input/Output CSV or binary, Input Random, Output to MessageBox
  • Adapter Selection
  • Show Adapter Memory Consumed
  • Variables
  • Generate C++ Code and VS Solution

Features for NN design

  • Design a neural network
  • MNIST-included dataset
  • Adapter Selection
  • Training on GPU
  • Training on CPU
  • Testing on GPU/CPU
  • Batch training
  • Saving/Loading model
  • Saving as PTH or ONNX with Python installed
  • Customizable network structure
  • Customizable activation functions

Supported DirectML Operators

  • Activation: Celu,Elu,Gelu,HardMax,HardSigmoid,Identity,LeakyRelu,Linear,LogSoftmax,ParameterizedRelu,ParametricSoftplus,Relu,ScaledElu,ScaledTanh,Shrink,Sigmoid,Softmax,Softplus,Softsign,Tanh,ThresholdedRelu
  • Batch Processing: BatchNormalization, BatchNormalizationGrad, BatchNormalizationTraining, BatchNormalizationTrainingGrad
  • Comparison Operators: If, IsInfinity, IsNaN
  • A: Abs,ACos,ACosh,Add,And,ASin,ASinh,ATan,ATanh,ATanYX,AveragePooling
  • B: BitAnd, BitCount, BitOr, BitNot, BitShiftLeft, BitShiftRight, BitXor
  • C: Cast, Ceil, Clip, ClipGrad, Constant, ConvolutionInteger, Cos, Cosh, Cummulative Sum/Product, Convolution
  • D: DepthToSpace, Dequantize, DequantizeLinear, DiagonalMatrix, DifferenceSquare, Divide
  • E: Erf, Exp, Equals
  • F: Floor
  • G: Gather, GatherElemends, GatherND, Gemm, GreaterThan, GreaterThanOrEqual, Gru
  • I: Identity,
  • J: Join
  • L: Log, LessThan, LessThanOrEqual, LocalResponseNormalization
  • M: Max,MaxPooling,Mean,MeanVarianceNormalization,Min,Multiply,Modulus Floor,Modulus Truncate
  • N: Neg, NonZeroCoordinates, Not
  • O: OneHot, Or
  • P: Padding, Pow
  • Q: QuantizedLinearConvolution, QuantizeLinear
  • R: RandomGenerator, Recip, Reduce, Resample, ResampleGrad, Round, RoiAlign, RoiAlignGrad, Reintrerpret, ReverseSubsequences
  • S: ScatterElements, Slice, SliceGrad, Subtract, Sqrt, Sign, SpaceToDepth
  • T: Threshold, TopK
  • U: Upsample2D
  • V: ValueScale2D
  • X: Xor

Screenshots

screenshot screenshot

ToDo

Complete VS project generation support

Recurrent NN training

Usage of batch DML operations for faster training

Implement Loops

About

DirectML Visual Graph Editor

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published