The codes for the work "Hybrid Shunted Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation"
matplotlib==3.3.4
numpy==1.19.2
Pillow==9.2.0
tifffile==2020.10.1
timm==0.4.12
torch==1.10.2
torchsummary==1.5.1
torchvision==0.11.3
tqdm==4.63.0
!python train_Potsdam.py --batch_size 32 \
--model 'hst_unet' \
--epochs 150 \
--img_size 256 \
--pretrained '' \
--weight_decay 1e-4 \
--lr 0.01 \
--seed 512 \
--root '/mnt' \
--num_classes 6 \
--device 'cuda' \
--workers 2 \
--log_path '/saveModels/logging/Potsdam/'
!python train_Vaihingen.py --batch_size 32 \
--model 'hst_unet' \
--epochs 150 \
--img_size 256 \
--pretrained '' \
--weight_decay 1e-4 \
--lr 0.001 \
--seed 512 \
--root '/mnt' \
--num_classes 6 \
--device 'cuda' \
--workers 2 \
--log_path '/saveModels/logging/Vaihingen/'
Zhou, H., Xiao, X., Li, H. et al. Hybrid Shunted Transformer embedding UNet for remote sensing image semantic segmentation. Neural Comput & Applic (2024). https://doi.org/10.1007/s00521-024-09888-4