|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "### 1.\tImport the necessary library and Load the dataset into the pandas dataframe" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [ |
| 15 | + { |
| 16 | + "name": "stderr", |
| 17 | + "output_type": "stream", |
| 18 | + "text": [ |
| 19 | + "/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216, got 192\n", |
| 20 | + " return f(*args, **kwds)\n", |
| 21 | + "/anaconda3/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 216, got 192\n", |
| 22 | + " return f(*args, **kwds)\n" |
| 23 | + ] |
| 24 | + } |
| 25 | + ], |
| 26 | + "source": [ |
| 27 | + "import pandas as pd\n", |
| 28 | + "from sklearn.preprocessing import MinMaxScaler\n", |
| 29 | + "df = pd.read_csv(\"../Data/Wholesale customers data.csv\")" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "markdown", |
| 34 | + "metadata": {}, |
| 35 | + "source": [ |
| 36 | + "### 2.\tCheck if there is missing data available if yes drop the missing data." |
| 37 | + ] |
| 38 | + }, |
| 39 | + { |
| 40 | + "cell_type": "code", |
| 41 | + "execution_count": 2, |
| 42 | + "metadata": {}, |
| 43 | + "outputs": [ |
| 44 | + { |
| 45 | + "data": { |
| 46 | + "text/html": [ |
| 47 | + "<div>\n", |
| 48 | + "<style scoped>\n", |
| 49 | + " .dataframe tbody tr th:only-of-type {\n", |
| 50 | + " vertical-align: middle;\n", |
| 51 | + " }\n", |
| 52 | + "\n", |
| 53 | + " .dataframe tbody tr th {\n", |
| 54 | + " vertical-align: top;\n", |
| 55 | + " }\n", |
| 56 | + "\n", |
| 57 | + " .dataframe thead th {\n", |
| 58 | + " text-align: right;\n", |
| 59 | + " }\n", |
| 60 | + "</style>\n", |
| 61 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 62 | + " <thead>\n", |
| 63 | + " <tr style=\"text-align: right;\">\n", |
| 64 | + " <th></th>\n", |
| 65 | + " <th>Null</th>\n", |
| 66 | + " <th>type</th>\n", |
| 67 | + " </tr>\n", |
| 68 | + " </thead>\n", |
| 69 | + " <tbody>\n", |
| 70 | + " <tr>\n", |
| 71 | + " <th>Channel</th>\n", |
| 72 | + " <td>False</td>\n", |
| 73 | + " <td>int64</td>\n", |
| 74 | + " </tr>\n", |
| 75 | + " <tr>\n", |
| 76 | + " <th>Region</th>\n", |
| 77 | + " <td>False</td>\n", |
| 78 | + " <td>int64</td>\n", |
| 79 | + " </tr>\n", |
| 80 | + " <tr>\n", |
| 81 | + " <th>Fresh</th>\n", |
| 82 | + " <td>False</td>\n", |
| 83 | + " <td>int64</td>\n", |
| 84 | + " </tr>\n", |
| 85 | + " <tr>\n", |
| 86 | + " <th>Milk</th>\n", |
| 87 | + " <td>False</td>\n", |
| 88 | + " <td>int64</td>\n", |
| 89 | + " </tr>\n", |
| 90 | + " <tr>\n", |
| 91 | + " <th>Grocery</th>\n", |
| 92 | + " <td>False</td>\n", |
| 93 | + " <td>int64</td>\n", |
| 94 | + " </tr>\n", |
| 95 | + " <tr>\n", |
| 96 | + " <th>Frozen</th>\n", |
| 97 | + " <td>False</td>\n", |
| 98 | + " <td>int64</td>\n", |
| 99 | + " </tr>\n", |
| 100 | + " <tr>\n", |
| 101 | + " <th>Detergents_Paper</th>\n", |
| 102 | + " <td>False</td>\n", |
| 103 | + " <td>int64</td>\n", |
| 104 | + " </tr>\n", |
| 105 | + " <tr>\n", |
| 106 | + " <th>Delicassen</th>\n", |
| 107 | + " <td>False</td>\n", |
| 108 | + " <td>int64</td>\n", |
| 109 | + " </tr>\n", |
| 110 | + " </tbody>\n", |
| 111 | + "</table>\n", |
| 112 | + "</div>" |
| 113 | + ], |
| 114 | + "text/plain": [ |
| 115 | + " Null type\n", |
| 116 | + "Channel False int64\n", |
| 117 | + "Region False int64\n", |
| 118 | + "Fresh False int64\n", |
| 119 | + "Milk False int64\n", |
| 120 | + "Grocery False int64\n", |
| 121 | + "Frozen False int64\n", |
| 122 | + "Detergents_Paper False int64\n", |
| 123 | + "Delicassen False int64" |
| 124 | + ] |
| 125 | + }, |
| 126 | + "execution_count": 2, |
| 127 | + "metadata": {}, |
| 128 | + "output_type": "execute_result" |
| 129 | + } |
| 130 | + ], |
| 131 | + "source": [ |
| 132 | + "null_ = df.isna().any()\n", |
| 133 | + "dtypes = df.dtypes\n", |
| 134 | + "info = pd.concat([null_,dtypes],axis = 1,keys = ['Null','type'])\n", |
| 135 | + "info" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "### 3.\tPerform the Normalization scaling. To do so, use MinMaxScaler() class from sklearn.preprocessing and implement fit_transorm() method" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": 3, |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [ |
| 150 | + { |
| 151 | + "data": { |
| 152 | + "text/html": [ |
| 153 | + "<div>\n", |
| 154 | + "<style scoped>\n", |
| 155 | + " .dataframe tbody tr th:only-of-type {\n", |
| 156 | + " vertical-align: middle;\n", |
| 157 | + " }\n", |
| 158 | + "\n", |
| 159 | + " .dataframe tbody tr th {\n", |
| 160 | + " vertical-align: top;\n", |
| 161 | + " }\n", |
| 162 | + "\n", |
| 163 | + " .dataframe thead th {\n", |
| 164 | + " text-align: right;\n", |
| 165 | + " }\n", |
| 166 | + "</style>\n", |
| 167 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 168 | + " <thead>\n", |
| 169 | + " <tr style=\"text-align: right;\">\n", |
| 170 | + " <th></th>\n", |
| 171 | + " <th>Channel</th>\n", |
| 172 | + " <th>Region</th>\n", |
| 173 | + " <th>Fresh</th>\n", |
| 174 | + " <th>Milk</th>\n", |
| 175 | + " <th>Grocery</th>\n", |
| 176 | + " <th>Frozen</th>\n", |
| 177 | + " <th>Detergents_Paper</th>\n", |
| 178 | + " <th>Delicassen</th>\n", |
| 179 | + " </tr>\n", |
| 180 | + " </thead>\n", |
| 181 | + " <tbody>\n", |
| 182 | + " <tr>\n", |
| 183 | + " <th>0</th>\n", |
| 184 | + " <td>1.0</td>\n", |
| 185 | + " <td>1.0</td>\n", |
| 186 | + " <td>0.112940</td>\n", |
| 187 | + " <td>0.130727</td>\n", |
| 188 | + " <td>0.081464</td>\n", |
| 189 | + " <td>0.003106</td>\n", |
| 190 | + " <td>0.065427</td>\n", |
| 191 | + " <td>0.027847</td>\n", |
| 192 | + " </tr>\n", |
| 193 | + " <tr>\n", |
| 194 | + " <th>1</th>\n", |
| 195 | + " <td>1.0</td>\n", |
| 196 | + " <td>1.0</td>\n", |
| 197 | + " <td>0.062899</td>\n", |
| 198 | + " <td>0.132824</td>\n", |
| 199 | + " <td>0.103097</td>\n", |
| 200 | + " <td>0.028548</td>\n", |
| 201 | + " <td>0.080590</td>\n", |
| 202 | + " <td>0.036984</td>\n", |
| 203 | + " </tr>\n", |
| 204 | + " <tr>\n", |
| 205 | + " <th>2</th>\n", |
| 206 | + " <td>1.0</td>\n", |
| 207 | + " <td>1.0</td>\n", |
| 208 | + " <td>0.056622</td>\n", |
| 209 | + " <td>0.119181</td>\n", |
| 210 | + " <td>0.082790</td>\n", |
| 211 | + " <td>0.039116</td>\n", |
| 212 | + " <td>0.086052</td>\n", |
| 213 | + " <td>0.163559</td>\n", |
| 214 | + " </tr>\n", |
| 215 | + " <tr>\n", |
| 216 | + " <th>3</th>\n", |
| 217 | + " <td>0.0</td>\n", |
| 218 | + " <td>1.0</td>\n", |
| 219 | + " <td>0.118254</td>\n", |
| 220 | + " <td>0.015536</td>\n", |
| 221 | + " <td>0.045464</td>\n", |
| 222 | + " <td>0.104842</td>\n", |
| 223 | + " <td>0.012346</td>\n", |
| 224 | + " <td>0.037234</td>\n", |
| 225 | + " </tr>\n", |
| 226 | + " <tr>\n", |
| 227 | + " <th>4</th>\n", |
| 228 | + " <td>1.0</td>\n", |
| 229 | + " <td>1.0</td>\n", |
| 230 | + " <td>0.201626</td>\n", |
| 231 | + " <td>0.072914</td>\n", |
| 232 | + " <td>0.077552</td>\n", |
| 233 | + " <td>0.063934</td>\n", |
| 234 | + " <td>0.043455</td>\n", |
| 235 | + " <td>0.108093</td>\n", |
| 236 | + " </tr>\n", |
| 237 | + " </tbody>\n", |
| 238 | + "</table>\n", |
| 239 | + "</div>" |
| 240 | + ], |
| 241 | + "text/plain": [ |
| 242 | + " Channel Region Fresh Milk Grocery Frozen Detergents_Paper \\\n", |
| 243 | + "0 1.0 1.0 0.112940 0.130727 0.081464 0.003106 0.065427 \n", |
| 244 | + "1 1.0 1.0 0.062899 0.132824 0.103097 0.028548 0.080590 \n", |
| 245 | + "2 1.0 1.0 0.056622 0.119181 0.082790 0.039116 0.086052 \n", |
| 246 | + "3 0.0 1.0 0.118254 0.015536 0.045464 0.104842 0.012346 \n", |
| 247 | + "4 1.0 1.0 0.201626 0.072914 0.077552 0.063934 0.043455 \n", |
| 248 | + "\n", |
| 249 | + " Delicassen \n", |
| 250 | + "0 0.027847 \n", |
| 251 | + "1 0.036984 \n", |
| 252 | + "2 0.163559 \n", |
| 253 | + "3 0.037234 \n", |
| 254 | + "4 0.108093 " |
| 255 | + ] |
| 256 | + }, |
| 257 | + "execution_count": 3, |
| 258 | + "metadata": {}, |
| 259 | + "output_type": "execute_result" |
| 260 | + } |
| 261 | + ], |
| 262 | + "source": [ |
| 263 | + "norm_scale = MinMaxScaler().fit_transform(df)\n", |
| 264 | + "scaled_frame = pd.DataFrame(norm_scale,columns=df.columns)\n", |
| 265 | + "scaled_frame.head()" |
| 266 | + ] |
| 267 | + } |
| 268 | + ], |
| 269 | + "metadata": { |
| 270 | + "kernelspec": { |
| 271 | + "display_name": "Python 3", |
| 272 | + "language": "python", |
| 273 | + "name": "python3" |
| 274 | + }, |
| 275 | + "language_info": { |
| 276 | + "codemirror_mode": { |
| 277 | + "name": "ipython", |
| 278 | + "version": 3 |
| 279 | + }, |
| 280 | + "file_extension": ".py", |
| 281 | + "mimetype": "text/x-python", |
| 282 | + "name": "python", |
| 283 | + "nbconvert_exporter": "python", |
| 284 | + "pygments_lexer": "ipython3", |
| 285 | + "version": "3.6.4" |
| 286 | + } |
| 287 | + }, |
| 288 | + "nbformat": 4, |
| 289 | + "nbformat_minor": 2 |
| 290 | +} |
0 commit comments