Skip to content

[mlir][tosa] Allow unranked input/output tensors in resize ops #141608

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 29, 2025

Conversation

lhutton1
Copy link
Contributor

This commit allows the input/output of the resize op to be unranked to account for shapes being computed during shape inference.

This commit allows the input/output of the resize op to be unranked to
account for shapes being computed during shape inference.

Change-Id: Ib53b6fa16e73779e3b9c40f8463cc89afc04226a
@llvmbot
Copy link
Member

llvmbot commented May 27, 2025

@llvm/pr-subscribers-mlir-tosa

@llvm/pr-subscribers-mlir

Author: Luke Hutton (lhutton1)

Changes

This commit allows the input/output of the resize op to be unranked to account for shapes being computed during shape inference.


Full diff: https://github.com/llvm/llvm-project/pull/141608.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Tosa/IR/TosaOps.cpp (+10-10)
  • (modified) mlir/test/Dialect/Tosa/ops.mlir (+20)
diff --git a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
index 3ee5a85a21dca..4620da57a5b27 100644
--- a/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
+++ b/mlir/lib/Dialect/Tosa/IR/TosaOps.cpp
@@ -2496,16 +2496,6 @@ LogicalResult tosa::ResizeOp::verify() {
   const RankedTensorType outputType =
       llvm::dyn_cast<RankedTensorType>(output.getType());
 
-  if (!inputType)
-    return emitOpError("expect a ranked input tensor");
-  if (!outputType)
-    return emitOpError("expect a ranked output tensor");
-
-  const int64_t oh = outputType.getDimSize(1);
-  const int64_t ow = outputType.getDimSize(2);
-  const int64_t ih = inputType.getDimSize(1);
-  const int64_t iw = inputType.getDimSize(2);
-
   SmallVector<int64_t> scaleValues;
   SmallVector<int64_t> offsetValues;
   SmallVector<int64_t> borderValues;
@@ -2531,6 +2521,16 @@ LogicalResult tosa::ResizeOp::verify() {
   const int64_t borderY = borderValues[0];
   const int64_t borderX = borderValues[1];
 
+  if (!inputType)
+    return success();
+  if (!outputType)
+    return success();
+
+  const int64_t oh = outputType.getDimSize(1);
+  const int64_t ow = outputType.getDimSize(2);
+  const int64_t ih = inputType.getDimSize(1);
+  const int64_t iw = inputType.getDimSize(2);
+
   // Don't check with input height that could be broadcast (ih != 1)
   // since Linalg, a consumer of TOSA, expects broadcasting support
   // in resize to be available. Taking the cautious approach for now,
diff --git a/mlir/test/Dialect/Tosa/ops.mlir b/mlir/test/Dialect/Tosa/ops.mlir
index 5ec506a45b3ad..767fa833dedd4 100644
--- a/mlir/test/Dialect/Tosa/ops.mlir
+++ b/mlir/test/Dialect/Tosa/ops.mlir
@@ -743,6 +743,26 @@ func.func @test_resize(%arg0: tensor<1x32x32x8xf32>) -> tensor<1x64x64x8xf32> {
   return %1 : tensor<1x64x64x8xf32>
 }
 
+// -----
+// CHECK-LABEL: resize_unranked_output
+func.func @test_resize_unranked_output(%arg0: tensor<1x32x32x8xf32>) -> tensor<*xf32> {
+  %scale = tosa.const_shape { values = dense<[4, 2, 4, 2]> : tensor<4xindex> } : () -> !tosa.shape<4>
+  %offset = tosa.const_shape { values = dense<[-1, -1]> : tensor<2xindex> } : () -> !tosa.shape<2>
+  %border = tosa.const_shape { values = dense<[1, 1]> : tensor<2xindex> } : () -> !tosa.shape<2>
+  %1 = tosa.resize %arg0, %scale, %offset, %border { mode = "BILINEAR" } : (tensor<1x32x32x8xf32>, !tosa.shape<4>, !tosa.shape<2>, !tosa.shape<2>) -> tensor<*xf32>
+  return %1 : tensor<*xf32>
+}
+
+// -----
+// CHECK-LABEL: resize_unranked_input
+func.func @test_resize_unranked_input(%arg0: tensor<*xf32>) -> tensor<1x64x64x8xf32> {
+  %scale = tosa.const_shape { values = dense<[4, 2, 4, 2]> : tensor<4xindex> } : () -> !tosa.shape<4>
+  %offset = tosa.const_shape { values = dense<[-1, -1]> : tensor<2xindex> } : () -> !tosa.shape<2>
+  %border = tosa.const_shape { values = dense<[1, 1]> : tensor<2xindex> } : () -> !tosa.shape<2>
+  %1 = tosa.resize %arg0, %scale, %offset, %border { mode = "BILINEAR" } : (tensor<*xf32>, !tosa.shape<4>, !tosa.shape<2>, !tosa.shape<2>) -> tensor<1x64x64x8xf32>
+  return %1 : tensor<1x64x64x8xf32>
+}
+
 // -----
 // CHECK-LABEL: cast
 func.func @test_cast1(%arg0: tensor<13x21x3xi32>) -> tensor<13x21x3xf32> {

@lhutton1 lhutton1 merged commit 7605198 into llvm:main May 29, 2025
14 checks passed
@lhutton1 lhutton1 deleted the resize-unranked branch May 29, 2025 08:27
svkeerthy pushed a commit that referenced this pull request May 29, 2025
This commit allows the input/output of the resize op to be unranked to
account for shapes being computed during shape inference.
google-yfyang pushed a commit to google-yfyang/llvm-project that referenced this pull request May 29, 2025
…141608)

This commit allows the input/output of the resize op to be unranked to
account for shapes being computed during shape inference.
sivan-shani pushed a commit to sivan-shani/llvm-project that referenced this pull request Jun 3, 2025
…141608)

This commit allows the input/output of the resize op to be unranked to
account for shapes being computed during shape inference.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants