-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Hierarchy of Sized traits #3729
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Conversation
Co-authored-by: León Orell Valerian Liehr <me@fmease.dev>
Sized Hierarchy This patch implements rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`, and makes `MetaSized` and `Sized` into const traits (relying on unstable `feature(const_trait_impl)`). See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes migrations which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - On the current edition, `Sized` is rewritten as `const Sized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const Sized` will be emitted. - On the next edition, non-const `Sized` will resume being the default bound. - On the current edition, `?Sized` is rewritten as `const MetaSized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const MetaSized` will be emitted. - On the next edition, writing `?Sized` will be prohibited. - On the current edition, `const MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. - If the `sized_hierarchy` feature is enabled, then an edition migration lint to add an explicit `const MetaSized` supertrait will be emitted. - On the next edition, there is no default `const MetaSized` supertrait. Each of these migrations is not conditional on whether the item being migrated *needs* the migration to the stricter bound - this would be preferable but is not yet implemented (if it is possible to implement). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `const MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Only once `sized_hierarchy` is stabilised would edition migration lints start to be emitted and diagnostic output show the "real" sizedness traits behind-the-scenes, rather than `?Sized`. Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite (library: +573/-184, compiler: +1268/-310, tests: +3720/-452). - It is expected that this will have performance regressions initially and I'll aim to resolve those prior to merging if possible. - I'd appreciate feedback on how best to go about this from those familiar with the type system. - On my local machine, this passes all of the test suites, a stage two build and a tidy check. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy This patch implements rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`, and makes `MetaSized` and `Sized` into const traits (relying on unstable `feature(const_trait_impl)`). See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes migrations which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - On the current edition, `Sized` is rewritten as `const Sized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const Sized` will be emitted. - On the next edition, non-const `Sized` will resume being the default bound. - On the current edition, `?Sized` is rewritten as `const MetaSized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const MetaSized` will be emitted. - On the next edition, writing `?Sized` will be prohibited. - On the current edition, `const MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. - If the `sized_hierarchy` feature is enabled, then an edition migration lint to add an explicit `const MetaSized` supertrait will be emitted. - On the next edition, there is no default `const MetaSized` supertrait. Each of these migrations is not conditional on whether the item being migrated *needs* the migration to the stricter bound - this would be preferable but is not yet implemented (if it is possible to implement). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `const MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Only once `sized_hierarchy` is stabilised would edition migration lints start to be emitted and diagnostic output show the "real" sizedness traits behind-the-scenes, rather than `?Sized`. Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite (library: +573/-184, compiler: +1268/-310, tests: +3720/-452). - It is expected that this will have performance regressions initially and I'll aim to resolve those prior to merging if possible. - I'd appreciate feedback on how best to go about this from those familiar with the type system. - On my local machine, this passes all of the test suites, a stage two build and a tidy check. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy This patch implements rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`, and makes `MetaSized` and `Sized` into const traits (relying on unstable `feature(const_trait_impl)`). See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes migrations which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - On the current edition, `Sized` is rewritten as `const Sized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const Sized` will be emitted. - On the next edition, non-const `Sized` will resume being the default bound. - On the current edition, `?Sized` is rewritten as `const MetaSized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const MetaSized` will be emitted. - On the next edition, writing `?Sized` will be prohibited. - On the current edition, `const MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. - If the `sized_hierarchy` feature is enabled, then an edition migration lint to add an explicit `const MetaSized` supertrait will be emitted. - On the next edition, there is no default `const MetaSized` supertrait. Each of these migrations is not conditional on whether the item being migrated *needs* the migration to the stricter bound - this would be preferable but is not yet implemented (if it is possible to implement). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `const MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Only once `sized_hierarchy` is stabilised would edition migration lints start to be emitted and diagnostic output show the "real" sizedness traits behind-the-scenes, rather than `?Sized`. Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite (library: +573/-184, compiler: +1268/-310, tests: +3720/-452). - It is expected that this will have performance regressions initially and I'll aim to resolve those prior to merging if possible. - I'd appreciate feedback on how best to go about this from those familiar with the type system. - On my local machine, this passes all of the test suites, a stage two build and a tidy check. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy This patch implements rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`, and makes `MetaSized` and `Sized` into const traits (relying on unstable `feature(const_trait_impl)`). See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes migrations which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - On the current edition, `Sized` is rewritten as `const Sized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const Sized` will be emitted. - On the next edition, non-const `Sized` will resume being the default bound. - On the current edition, `?Sized` is rewritten as `const MetaSized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const MetaSized` will be emitted. - On the next edition, writing `?Sized` will be prohibited. - On the current edition, `const MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. - If the `sized_hierarchy` feature is enabled, then an edition migration lint to add an explicit `const MetaSized` supertrait will be emitted. - On the next edition, there is no default `const MetaSized` supertrait. Each of these migrations is not conditional on whether the item being migrated *needs* the migration to the stricter bound - this would be preferable but is not yet implemented (if it is possible to implement). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `const MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Only once `sized_hierarchy` is stabilised would edition migration lints start to be emitted and diagnostic output show the "real" sizedness traits behind-the-scenes, rather than `?Sized`. Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite (library: +573/-184, compiler: +1268/-310, tests: +3720/-452). - It is expected that this will have performance regressions initially and I'll aim to resolve those prior to merging if possible. - I'd appreciate feedback on how best to go about this from those familiar with the type system. - On my local machine, this passes all of the test suites, a stage two build and a tidy check. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy This patch implements rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`, and makes `MetaSized` and `Sized` into const traits (relying on unstable `feature(const_trait_impl)`). See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes migrations which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - On the current edition, `Sized` is rewritten as `const Sized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const Sized` will be emitted. - On the next edition, non-const `Sized` will resume being the default bound. - On the current edition, `?Sized` is rewritten as `const MetaSized` - If the `sized_hierarchy` feature is enabled, then an edition migration lint to rewrite the bound to `const MetaSized` will be emitted. - On the next edition, writing `?Sized` will be prohibited. - On the current edition, `const MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. - If the `sized_hierarchy` feature is enabled, then an edition migration lint to add an explicit `const MetaSized` supertrait will be emitted. - On the next edition, there is no default `const MetaSized` supertrait. Each of these migrations is not conditional on whether the item being migrated *needs* the migration to the stricter bound - this would be preferable but is not yet implemented (if it is possible to implement). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `const MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Only once `sized_hierarchy` is stabilised would edition migration lints start to be emitted and diagnostic output show the "real" sizedness traits behind-the-scenes, rather than `?Sized`. Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite (library: +573/-184, compiler: +1268/-310, tests: +3720/-452). - It is expected that this will have performance regressions initially and I'll aim to resolve those prior to merging if possible. - I'd appreciate feedback on how best to go about this from those familiar with the type system. - On my local machine, this passes all of the test suites, a stage two build and a tidy check. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in #137944 (comment) Fixes #79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in rust-lang/rust#137944 (comment) Fixes rust-lang/rust#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in rust-lang/rust#137944 (comment) Fixes rust-lang/rust#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
rust-lang/rust#137944 was merged, so there's now an unstable implementation of the non-const parts of this RFC |
Relevant upstream PR: rust-lang/rust#137944 (Sized Hierarchy: Part I). This PR implements a part of [RFC 3729](rust-lang/rfcs#3729), which prescribes a hierarchy of `Sized` traits. Notably, this disallows instantiation of `size_of_val` and `align_of_val` with extern types. Consequently, the code in test `unsized_foreign.rs` no longer compiles instead of panicking, as it previously did. This test is therefore removed. Work in progress: figure out whether we can make `foreign_type.rs` work. Resolves: model-checking#4165
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in rust-lang/rust#137944 (comment) Fixes rust-lang/rust#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Relevant upstream PR: rust-lang/rust#137944 (Sized Hierarchy: Part I). This PR implements a part of [RFC 3729](rust-lang/rfcs#3729), which prescribes a hierarchy of `Sized` traits. Notably, this disallows instantiation of `size_of_val` and `align_of_val` with extern types. Consequently, the code in tests `unsized_foreign.rs` and `foreign_type.rs`no longer compiles (when previously some of the tests would panic). These test were therefore removed. Resolves: #4165 By submitting this pull request, I confirm that my contribution is made under the terms of the Apache 2.0 and MIT licenses.
Relevant upstream PR: rust-lang/rust#137944 (Sized Hierarchy: Part I). This PR implements a part of [RFC 3729](rust-lang/rfcs#3729), which prescribes a hierarchy of `Sized` traits. Notably, this disallows instantiation of `size_of_val` and `align_of_val` with extern types. Consequently, the code in tests `unsized_foreign.rs` and `foreign_type.rs`no longer compiles (when previously some of the tests would panic). These test were therefore removed. Resolves: #4165 By submitting this pull request, I confirm that my contribution is made under the terms of the Apache 2.0 and MIT licenses.
Relevant upstream PR: rust-lang/rust#137944 (Sized Hierarchy: Part I). This PR implements a part of [RFC 3729](rust-lang/rfcs#3729), which prescribes a hierarchy of `Sized` traits. Notably, this disallows instantiation of `size_of_val` and `align_of_val` with extern types. Consequently, the code in tests `unsized_foreign.rs` as well as parts of `foreign_type.rs` no longer compile (when previously some of the tests would panic). These test were therefore removed. Resolves: #4165 By submitting this pull request, I confirm that my contribution is made under the terms of the Apache 2.0 and MIT licenses.
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in rust-lang#137944 (comment) Fixes rust-lang#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
Sized Hierarchy: Part I This patch implements the non-const parts of rust-lang/rfcs#3729. It introduces two new traits to the standard library, `MetaSized` and `PointeeSized`. See the RFC for the rationale behind these traits and to discuss whether this change makes sense in the abstract. These traits are unstable (as is their constness), so users cannot refer to them without opting-in to `feature(sized_hierarchy)`. These traits are not behind `cfg`s as this would make implementation unfeasible, there would simply be too many `cfg`s required to add the necessary bounds everywhere. So, like `Sized`, these traits are automatically implemented by the compiler. RFC 3729 describes changes which are necessary to preserve backwards compatibility given the introduction of these traits, which are implemented and as follows: - `?Sized` is rewritten as `MetaSized` - `MetaSized` is added as a default supertrait for all traits w/out an explicit sizedness supertrait already. There are no edition migrations implemented in this, as these are primarily required for the constness parts of the RFC and prior to stabilisation of this (and so will come in follow-up PRs alongside the const parts). All diagnostic output should remain the same (showing `?Sized` even if the compiler sees `MetaSized`) unless the `sized_hierarchy` feature is enabled. Due to the use of unstable extern types in the standard library and rustc, some bounds in both projects have had to be relaxed already - this is unfortunate but unavoidable so that these extern types can continue to be used where they were before. Performing these relaxations in the standard library and rustc are desirable longer-term anyway, but some bounds are not as relaxed as they ideally would be due to the inability to relax `Deref::Target` (this will be investigated separately). It is hoped that this is implemented such that it could be merged and these traits could exist "under the hood" without that being observable to the user (other than in any performance impact this has on the compiler, etc). Some details might leak through due to the standard library relaxations, but this has not been observed in test output. **Notes:** - Any commits starting with "upstream:" can be ignored, as these correspond to other upstream PRs that this is based on which have yet to be merged. - This best reviewed commit-by-commit. I've attempted to make the implementation easy to follow and keep similar changes and test output updates together. - Each commit has a short description describing its purpose. - This patch is large but it's primarily in the test suite. - I've worked on the performance of this patch and a few optimisations are implemented so that the performance impact is neutral-to-minor. - `PointeeSized` is a different name from the RFC just to make it more obvious that it is different from `std::ptr::Pointee` but all the names are yet to be bikeshed anyway. - `@nikomatsakis` has confirmed [that this can proceed as an experiment from the t-lang side](https://rust-lang.zulipchat.com/#narrow/channel/435869-project-goals/topic/SVE.20and.20SME.20on.20AArch64.20.28goals.23270.29/near/506196491) - FCP in rust-lang/rust#137944 (comment) Fixes rust-lang/rust#79409. r? `@ghost` (I'll discuss this with relevant teams to find a reviewer)
I don't think the I think the I think its also worth considering how this can be expanded in the future, such as by making thin types with runtime-known size, such as thin c strings. |
All of Rust's types are either sized, which implement the
Sized
trait and have a statically known size during compilation, or unsized, which do not implement theSized
trait and are assumed to have a size which can be computed at runtime. However, this dichotomy misses two categories of type - types whose size is unknown during compilation but is a runtime constant, and types whose size can never be known. Supporting the former is a prerequisite to stable scalable vector types and supporting the latter is a prerequisite to unblocking extern types. This RFC proposes a hierarchy ofSized
traits in order to be able to support these use cases.This RFC relies on experimental, yet-to-be-RFC'd const traits, so this is blocked on that. I haven't squashed any of the previous revisions but can do so if/when this is approved. Already discussed in the 2024-11-13 t-lang design meeting with feedback incorporated.
See this comment for the most recent summary of changes to this RFC since it was opened.
Rendered