-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometric_transform.py
106 lines (87 loc) · 3.96 KB
/
geometric_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import cv2 as cv
import numpy as np
from ipywidgets import widgets
from scipy.ndimage import affine_transform
# 几何变换参数控件,默认隐藏
geometry_params = widgets.HBox([
widgets.FloatSlider(min=-100, max=100, step=1, value=0, description='Translation X:', layout={'visibility': 'hidden'}),
widgets.FloatSlider(min=-100, max=100, step=1, value=0, description='Translation Y:', layout={'visibility': 'hidden'}),
widgets.FloatSlider(min=-180, max=180, step=1, value=0, description='Rotation Angle:', layout={'visibility': 'hidden'}),
widgets.FloatSlider(min=0.1, max=3, step=0.1, value=1, description='Scale Factor:', layout={'visibility': 'hidden'}),
widgets.Dropdown(options=['None', 'Horizontal', 'Vertical', 'Both'], value='None', description='Flip Direction:', layout={'visibility': 'hidden'})
])
def translate(image, tx, ty):
"""平移图像"""
rows, cols = image.shape[:2]
M = np.float32([[1, 0, tx], [0, 1, ty]])
translated_image = cv.warpAffine(image, M, (cols, rows))
return translated_image
def rotate(image, angle):
"""旋转图像"""
rows, cols = image.shape[:2]
M = cv.getRotationMatrix2D((cols/2, rows/2), angle, 1)
rotated_image = cv.warpAffine(image, M, (cols, rows))
return rotated_image
def shear(image, sx=1, sy=0):
"""错切图像"""
rows, cols = image.shape[:2]
M = np.float32([[1, sx, 0], [sy, 1, 0]])
sheared_image = cv.warpAffine(image, M, (cols, rows))
return sheared_image
def scale(image, scale_factor):
"""缩放图像"""
fx = scale_factor
fy = scale_factor
scaled_image = cv.resize(image, None, fx=fx, fy=fy, interpolation=cv.INTER_LINEAR)
return scaled_image
def flip(image, direction):
"""翻转图像"""
if direction == 'Horizontal':
flipped_image = cv.flip(image, 1)
elif direction == 'Vertical':
flipped_image = cv.flip(image, 0)
elif direction == 'Both':
flipped_image = cv.flip(image, -1)
else:
flipped_image = image # 如果方向为None,返回原图像
return flipped_image
def get_affine_matrix(rotation=0, scale=(1, 1), shear=10, translation=(0, 0)):
"""创建一个仿射变换矩阵."""
# 旋转 (角度转换为弧度)
theta = np.radians(rotation)
rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]])
# 缩放
scale_matrix = np.array([[scale[0], 0, 0],
[0, scale[1], 0],
[0, 0, 1]])
# 剪切
shear_matrix = np.array([[1, np.tan(np.radians(shear)), 0],
[0, 1, 0],
[0, 0, 1]])
# 组合所有变换(注意顺序:旋转 -> 缩放 -> 剪切)
combined_matrix = rotation_matrix @ scale_matrix @ shear_matrix
# 返回线性变换矩阵和平移向量
return combined_matrix[:2, :2], translation
def apply_affine_transform(image, linear_matrix, translation_vector):
"""应用仿射变换到图像."""
# 获取图像尺寸
h, w = image.shape[:2]
# 计算新的中心点偏移量
center = np.array([w / 2, h / 2])
# 先计算线性变换对中心点的影响
transformed_center = linear_matrix.dot(center)
# 然后计算总的偏移量
offset = center - transformed_center + translation_vector
# 应用仿射变换
transformed_image = affine_transform(image, linear_matrix, offset=offset, output_shape=image.shape)
return transformed_image
def My_affine_transform(image, rotation=0, scale=(1, 1), shear=10, translation=(0, 0)):
"""自定义仿射变换"""
image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 获取仿射变换矩阵
linear_matrix, translation_vector = get_affine_matrix(rotation, scale, shear, translation)
# 应用仿射变换
transformed_image = apply_affine_transform(image_gray, linear_matrix, translation_vector)
return transformed_image