-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeometry.py
77 lines (67 loc) · 2.79 KB
/
geometry.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import cv2 as cv
def detect_shapes(image):
# 将图像转换为灰度图像
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 应用高斯模糊以减少噪声并改进轮廓检测
blurred = cv.GaussianBlur(gray, (5, 5), 0)
# 使用Canny边缘检测器检测边缘
edges = cv.Canny(blurred, 50, 150)
# 查找边缘图像中的轮廓
contours, _ = cv.findContours(edges.copy(), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)
shapes = []
for contour in contours:
shape = "unknown"
# 计算轮廓的面积
area = cv.contourArea(contour)
# 跳过面积过小的轮廓
if area < 10:
continue
epsilon = 0.02 * cv.arcLength(contour, True)
approx = cv.approxPolyDP(contour, epsilon, True)
# 根据顶点数量确定形状
if len(approx) == 3:
shape = "triangle" # 三角形
elif len(approx) == 4:
# 检查是否为正方形或矩形
x, y, w, h = cv.boundingRect(approx)
aspect_ratio = float(w) / h
if 0.95 <= aspect_ratio <= 1.05:
shape = "square" # 正方形
else:
shape = "rectangle" # 矩形
elif len(approx) == 5:
shape = "pentagon" # 五边形
elif len(approx) == 6:
shape = "hexagon" # 六边形
else:
# 检查是否为圆形或椭圆
perimeter = cv.arcLength(contour, True)
circularity = 4 * np.pi * (area / (perimeter ** 2)) # 圆形度
if circularity > 0.85:
shape = "circle" # 圆形
else:
# 拟合椭圆并检查其偏心率
ellipse = cv.fitEllipse(contour)
major_axis = max(ellipse[1])
minor_axis = min(ellipse[1])
eccentricity = np.sqrt(1 - (minor_axis / major_axis) ** 2)
if eccentricity < 0.1:
shape = "circle" # 圆形
elif eccentricity < 0.9:
shape = "ellipse" # 椭圆
# 在图像上绘制轮廓并在中心位置标注形状名称
cv.drawContours(image, [contour], -1, (0, 255, 0), 2)
M = cv.moments(contour)
if M["m00"] != 0:
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
cv.putText(image, shape, (cX, cY), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
shapes.append(shape)
return image, shapes
def geometric_dectect(image, sub_option):
if sub_option == '轮廓检测':
result_image = image.copy()
result_image, detected_shapes = detect_shapes(result_image)
print(f"检测到的形状: {detected_shapes}")
return result_image