-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrayscale.py
57 lines (45 loc) · 1.84 KB
/
grayscale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt
def grayscale(image):
"""将图像转换为灰度图像"""
return cv.cvtColor(image, cv.COLOR_BGR2GRAY)
def histogram_equalization(image):
"""执行灰度直方图均衡化"""
return cv.equalizeHist(image)
def My_hist_equalization(image):
# 确保输入是灰度图像
if len(image.shape) > 2 and image.shape[2] == 3:
image = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
# 计算图像的直方图
hist, bins = np.histogram(image.flatten(), 256, [0, 256])
# 计算累积分布函数
cdf = hist.cumsum()
# 归一化累积分布函数
cdf_normalized = cdf * hist.max() / cdf.max()
# 忽略直方图中的零值
cdf_m = np.ma.masked_equal(cdf, 0)
cdf_m = (cdf_m - cdf_m.min())*255/(cdf_m.max()-cdf_m.min())
# 填充被忽略的值为0
cdf = np.ma.filled(cdf_m, 0).astype('uint8')
# 将原始图像映射到新的灰度值
img_eq = cdf[image]
return img_eq
def linear_transformation(image, alpha=1.5, beta=15):
"""执行线性变换"""
return cv.convertScaleAbs(image, alpha=alpha, beta=beta)
def log_transformation(image, c=1):
"""执行对数变换"""
log_transformed_image = c * np.log(1 + image).astype(np.uint8)
return (log_transformed_image / np.max(log_transformed_image) * 255).astype(np.uint8)
def exponential_transformation(image, c=1, gamma=0.5):
"""执行指数变换"""
exp_transformed_image = c * np.power(image, gamma).astype(np.uint8)
return (exp_transformed_image / np.max(exp_transformed_image) * 255).astype(np.uint8)
def plot_histogram(image, bins=256):
"""绘制图像的灰度直方图"""
plt.hist(image.ravel(), bins=bins, range=[0, 256], color='r', alpha=0.7)
plt.xlabel('Pixel Value')
plt.ylabel('Frequency')
plt.title('Histogram')
plt.show()