-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmorphology_process.py
115 lines (95 loc) · 4.18 KB
/
morphology_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import cv2 as cv
import numpy as np
def pad_with(vector, pad_width, iaxis, kwargs):
"""用于np.pad的回调函数,以填充图像边界"""
pad_value = kwargs.get('padder', 0)
vector[:pad_width[0]] = pad_value
vector[-pad_width[1]:] = pad_value
return vector
def dilation(image, selem):
"""
对二值图像执行膨胀操作。
"""
# 获取结构元素的尺寸
selem_height, selem_width = selem.shape
selem_center = (selem_height // 2, selem_width // 2)
# 计算需要填充的宽度
pad_height = selem_height // 2
pad_width = selem_width // 2
# 填充图像以处理边界情况
padded_image = np.pad(image, ((pad_height, pad_height), (pad_width, pad_width)), pad_with)
# 初始化膨胀后的图像
dilated = np.zeros_like(image)
# 执行膨胀操作
for i in range(image.shape[0]):
for j in range(image.shape[1]):
# 提取与结构元素大小相同的区域
region = padded_image[i:i+selem_height, j:j+selem_width]
# 如果结构元素与区域的按位与结果中存在前景像素,则该位置为前景
if np.any(selem * region):
dilated[i, j] = 1
return dilated
def erosion(image, selem):
"""
对二值图像执行腐蚀操作。
"""
# 获取结构元素的尺寸
selem_height, selem_width = selem.shape
selem_center = (selem_height // 2, selem_width // 2)
# 计算需要填充的宽度
pad_height = selem_height // 2
pad_width = selem_width // 2
# 填充图像以处理边界情况
padded_image = np.pad(image, ((pad_height, pad_height), (pad_width, pad_width)), pad_with)
# 初始化腐蚀后的图像
eroded = np.zeros_like(image)
# 执行腐蚀操作
for i in range(image.shape[0]):
for j in range(image.shape[1]):
# 提取与结构元素大小相同的区域
region = padded_image[i:i+selem_height, j:j+selem_width]
# 如果结构元素与区域的按位与结果全部为前景像素,则该位置为前景
if np.all(selem <= region):
eroded[i, j] = 1
return eroded
def close_image(image, selem):
"""
对二值图像执行闭运算。
参数:
image: 输入的二值图像 (numpy array),其中0表示背景,1表示前景。
selem: 结构元素 (numpy array),用于定义邻域形状。
返回:
closed: 闭运算后的图像 (numpy array)。
"""
# 先进行膨胀操作
dilated = dilation(image, selem)
# 然后进行腐蚀操作
closed = erosion(dilated, selem)
return closed
def morphology_process(image, sub_option):
image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # 转换为灰度图像
_, dog_thresh = cv.threshold(image_gray, 150, 255, cv.THRESH_BINARY) # 二值化
if sub_option == '膨胀':
kernel = np.ones((5, 5), np.uint8) # 5x5的卷积核
dog_morphology = cv.dilate(dog_thresh, kernel, iterations=1)
elif sub_option == '腐蚀':
kernel = np.ones((5, 5), np.uint8) # 5x5的卷积核
dog_morphology = cv.erode(dog_thresh, kernel, iterations=1) # 腐蚀
elif sub_option == '开运算':
kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))
dog_morphology = cv.morphologyEx(dog_thresh, cv.MORPH_OPEN, kernel) # 开运算
elif sub_option == '闭运算':
kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))
dog_morphology = cv.morphologyEx(dog_thresh, cv.MORPH_CLOSE, kernel)
elif sub_option == '形态学梯度':
kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))
dog_morphology = cv.morphologyEx(dog_thresh, cv.MORPH_GRADIENT, kernel)
elif sub_option == '顶帽':
kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))
dog_morphology = cv.morphologyEx(dog_thresh, cv.MORPH_TOPHAT, kernel)
elif sub_option == '黑帽':
kernel = cv.getStructuringElement(cv.MORPH_RECT, (5, 5))
dog_morphology = cv.morphologyEx(dog_thresh, cv.MORPH_BLACKHAT, kernel)
elif sub_option == '自设闭运算':
dog_morphology = close_image(dog_thresh, np.ones((5, 5), np.uint8))
return dog_morphology