-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhierarchical_OLD.py
371 lines (313 loc) · 13.8 KB
/
hierarchical_OLD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import os
import re
from typing import List, Optional
import urllib.request
from pydantic import BaseModel, field_validator
from symai.components import FileReader, Function, ValidatedFunction
from symai.core_ext import bind
class Summary(BaseModel):
summary: str
facts: List[str]
type: str = None
quotes: Optional[List[str]] = None
# TODO: move to symai
class HierarchicalSummary(ValidatedFunction):
def __init__(
self,
file_link: str = None,
content: str = None,
asset_name: str = None,
min_num_chunks: int = 5,
min_chunk_size: int = 250,
max_output_tokens: int = 10000,
content_types: List[str] = None,
include_quotes: bool = False,
seed: int = 42,
*args,
**kwargs,
):
# only allow file_link or content
assert (file_link and not content) or (content and not file_link)
if content is not None:
assert asset_name is not None
self.include_quotes = include_quotes
super().__init__(data_model=Summary, retry_count=5, *args, **kwargs)
self.file_link = file_link
self.min_num_chunks = min_num_chunks
self.min_chunk_size = min_chunk_size
self.max_output_tokens = max_output_tokens
self.content_types = content_types
self.seed = seed
file_content = None
file_name = None
if file_link is not None:
if file_link.startswith("http"):
file_content, file_name = self.download_file(file_link)
else:
file_content, file_name = self.read_file(file_link)
else:
file_name = asset_name
file_content = str(content)
self.content = f"[[ASSET::{file_name}]]: <<<\n{str(file_content)}\n>>>\n"
def read_file(self, file_link: str):
self.print_verbose(f"Reading file from {file_link}")
reader = FileReader()
content = reader(file_link)
file_name = os.path.basename(file_link)
val = f"[[ASSET::{file_name}]]: <<<\n{str(content)}\n>>>\n"
return val, file_name
def download_file(self, file_link: str):
self.print_verbose(f"Downloading file from {file_link}")
with urllib.request.urlopen(file_link) as f:
content = f.read().decode("utf-8")
file_name = urllib.parse.urlparse(file_link).path
val = f"[[ASSET::{file_name}]]: <<<\n{str(content)}\n>>>\n"
return val, file_name
@property
def prompt(self):
type_specific_prompts = {
"Interview": "Identify and distinguish between different speakers. Include key quotes and main discussion points.",
"Keynote": "Include speaker details and their expertise. Highlight key messages and main takeaways.",
"Scientific/Research Paper": "Extract key statements, contributions, main results, and important references. Focus on methodology and findings.",
"Report": "Highlight numerical results, key statistics, and main takeaways. Include significant findings and conclusions.",
"Book": "Include author information, main plot points, and key character descriptions. Highlight character development and relationships.",
"Presentation Slides": "Determine if this is a motivational talk, results presentation, or idea/pitch. For motivational talks, focus on key messages and call-to-action. For result presentations, emphasize numerical results and achievements. For idea/pitch presentations, highlight the core idea and value proposition."
}
# Get type-specific prompt
type_prompt = ""
if self.content_types is not None and hasattr(self, '_content_type'):
content_type = self._content_type
if content_type in type_specific_prompts:
type_prompt = f"\nFor this {content_type}: {type_specific_prompts[content_type]}"
prompt_text = (
f"Create a comprehensive summary of the provided content and return the result as JSON.\n"
+ (
f"The type of the provided content is specified in [CONTENT TYPE].\n"
if self.content_types is not None
else ""
)
+ type_prompt
+ "\nThe summary must be in the language specified in [[CONTENT LANGUAGE]], regardless of the source material.\n"
+ f"Extract important facts from the text and return them in a list in JSON format as 'facts'.\n"
+ (
"- Extract significant quotes that support the main points and return them in a list in JSON format as 'quotes'\n"
if self.include_quotes
else ""
)
+ f"**IMPORTANT**: Ensure that the summary is consistent with the facts. Do not add information not contained in the text.\n"
+ (
"[Output Format]\n"
+ r'JSON schema: {"summary": "string", "facts": "array of strings"'
+ (', "quotes": "array of strings"' if self.include_quotes else '')
+ "}\n"
)
+ "\n\n"
)
return prompt_text
@property
def static_context(self):
return (
"Create a comprehensive summary of the provided text and extract important facts.\n"
+ "The summary must be in the same language as the text.\n"
+ "Return the summary in JSON format with the provided JSON schema.\n"
)
@bind(engine="neurosymbolic", property="compute_required_tokens")(lambda: 0)
def _compute_required_tokens(self):
pass
@bind(engine="neurosymbolic", property="api_max_context_tokens")(lambda: 0)
def _max_context_tokens(_):
pass
@bind(engine="neurosymbolic", property="api_max_response_tokens")(lambda: 0)
def _max_response_tokens(_):
pass
@bind(engine="neurosymbolic", property="compute_remaining_tokens")(lambda: 0)
def _compute_remaining_tokens(self):
pass
def compute_required_tokens(self, data, count_context=True):
# construct preview function
if count_context:
preview_function = Function(
prompt=self.prompt,
static_context=self.static_context,
dynamic_context=self.dynamic_context,
)
else:
preview_function = Function()
# execute preview
preview = preview_function(
data,
preview=True,
response_format={"type": "json_object"},
seed=self.seed,
)
# count prompt tokens
return self._compute_required_tokens(preview.prop.prepared_input)
def split_words(self, text):
return re.split(r"(\W+)", text)
def chunk_by_token_count(self, text, chunk_size, include_context=False):
# prepare results
chunks = []
# split text into words, punctuation, and spaces
words = self.split_words(text)
# chunking
num_words = len(words)
step_size = max(num_words // 2, 1)
min_step_size = 10
idx = 0
chunked_word_count = 0
cur_chunk = []
# combine chunks based on token length of full request
while chunked_word_count != len(words):
if idx + step_size < num_words:
candidate = words[idx : idx + step_size]
else:
candidate = words[idx:]
candidate_len = self.compute_required_tokens(
"".join(cur_chunk + candidate), count_context=include_context
)
if candidate_len > chunk_size:
step_size = step_size // 2
if step_size < min_step_size:
chunks.append("".join(cur_chunk))
chunked_word_count += len(cur_chunk)
step_size = len(cur_chunk)
cur_chunk = []
else:
cur_chunk += candidate
idx += len(candidate)
step_size = min(int(step_size * 1.05), num_words - idx)
if step_size == 0:
chunks.append("".join(cur_chunk))
chunked_word_count += len(cur_chunk)
step_size = len(cur_chunk)
cur_chunk = []
return chunks
def summarize_chunks(self, chunks):
chunk_summaries = []
chunk_facts = []
chunk_quotes = []
for chunk in chunks:
res, usage = super().forward(
chunk,
preview=False,
response_format={"type": "json_object"},
)
chunk_summaries.append(res.summary)
chunk_facts.extend(res.facts)
if hasattr(res, 'quotes') and res.quotes:
chunk_quotes.extend(res.quotes)
res = Summary(
summary="\n".join(chunk_summaries),
facts=chunk_facts,
quotes=chunk_quotes if chunk_quotes else None,
)
return res, self.compute_required_tokens(res.summary, count_context=False)
def calculate_chunk_size(self, total_tokens):
num_prompt_tokens = self.compute_required_tokens("", count_context=True)
max_tokens_per_chunk = int(
self._max_context_tokens() - num_prompt_tokens * 0.8
) # leave some headroom
chunk_size = total_tokens // self.min_num_chunks
if self.min_chunk_size < chunk_size:
num_chunks = self.min_num_chunks
while chunk_size - num_prompt_tokens > max_tokens_per_chunk:
num_chunks += 1
chunk_size = total_tokens // num_chunks - num_prompt_tokens
return max(self.min_chunk_size, total_tokens // num_chunks)
else:
return self.min_chunk_size
def get_asset_type(self, content):
if self.content_types is not None:
# construct pydantic BaseModel for content types
class ContentType(BaseModel):
type: str
@field_validator("type")
def validate_type(cls, v):
assert v in self.content_types
return v
# construct function to determine asset type, use ValidatedFunction to restrict to allowed types
asset_type_func = ValidatedFunction(
data_model=ContentType,
retry_count=self.retry_count,
prompt="What type of content is this text?\n"
+ f"Allowed types: {', '.join(self.content_types)}\n"
+ "The content type must be mapped exactly/literally to one of the listed types. No other type allowed!\n\n",
static_context=r"Return JSON: {'type': string}",
)
res, usage = asset_type_func(
content,
preview=False,
response_format={"type": "json_object"},
seed=self.seed,
)
# Store the content type for use in prompt
self._content_type = res.type
self.add_usage(usage)
return res.type
else:
return "Unknown"
def get_asset_language(self, content):
class ContentLanguage(BaseModel):
language: str
# construct function to determine asset type, use ValidatedFunction to restrict to allowed types
asset_type_func = ValidatedFunction(
data_model=ContentLanguage,
retry_count=self.retry_count,
prompt="Which language is this text in?\n"
+ "Follow the ISO 639 standard for language names, country and language codes; use string format: '[[language_name]] ([[country]]) [[language_code]]'\n",
static_context=r"Return JSON: {'language': string}",
)
res, usage = asset_type_func(
content,
preview=False,
response_format={"type": "json_object"},
seed=self.seed,
)
# add to overall usage
self.add_usage(usage)
return res.language
def forward(self) -> Summary:
self.reset_usage()
self.clear()
# compute required tokens
total_tokens = self.compute_required_tokens(self.content, count_context=False)
chunk_size = self.calculate_chunk_size(total_tokens)
if total_tokens > chunk_size:
summary_token_count = self._max_context_tokens() + 1
data = self.content
facts = None
quotes = None
asset_type = None
while summary_token_count > self.max_output_tokens:
chunks = self.chunk_by_token_count(data, chunk_size)
if asset_type is None:
asset_type = self.get_asset_type(chunks[0])
asset_language = self.get_asset_language(chunks[0])
self.adapt("[[CONTENT TYPE]]\n" + asset_type)
self.adapt("[[CONTENT LANGUAGE]]\n" + asset_language)
res, summary_token_count = self.summarize_chunks(chunks)
data = res.summary
# store facts from first summarization pass, do not overwrite
if facts is None:
facts = res.facts
quotes = res.quotes
# collect and return results
res = Summary(
summary=data,
facts=facts,
type=asset_type,
quotes=quotes,
)
return res, self.get_usage()
else:
asset_type = self.get_asset_type(self.content)
asset_language = self.get_asset_language(self.content)
self.adapt("[[CONTENT TYPE]]\n" + asset_type)
self.adapt("[[CONTENT LANGUAGE]]\n" + asset_language)
res, usage = super().forward(
self.content,
preview=False,
response_format={"type": "json_object"},
)
res.type = asset_type
return res, usage