-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIrisCaseStudy(KNN)1.py
35 lines (23 loc) · 929 Bytes
/
IrisCaseStudy(KNN)1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sklearn.datasets import load_iris
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
def MarvellousKNeighborsClassifier():
Dataset = load_iris() # 1 Load the data
Data = Dataset.data
Target = Dataset.target
# step 2. manipulating the data
Data_train, Data_test, Target_train, Target_test = train_test_split(Data, Target, test_size = 0.5)
Classifier = KNeighborsClassifier()
# step3. Build the model
Classifier.fit(Data_train, Target_train)
# step 4 .test the model
Predictions = Classifier.predict(Data_test)
Accuracy = accuracy_score(Target_test, Predictions)
# step 5 . Improve - missing
return Accuracy
def main():
Ret = MarvellousKNeighborsClassifier()
print("Acuracy of Iris dataset with KNN is ",Ret * 100)
if __name__ == "__main__":
main()