-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathbatch_processing_solution.py
152 lines (100 loc) · 4.55 KB
/
batch_processing_solution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# coding: utf-8
# Image Analysis with Python - Solution for Batch Processing
# The following is the script version of the tutorial's solution pipeline, where all the code
# has been wrapped in a single function that can be called many times for many images.
# Please refer to the jupyter notebooks ('image_analysis_tutorial[_solutions].ipynb') for
# more information, including detailed comments on every step.
## Importing Modules & Packages
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as ndi
## Defining the pipeline function
def run_pipeline(dirpath, filename):
"""Run 2D single-cell segmentation pipeline optimized for membrane-labeled
spinning-disk confocal images of membrane markers in zebrafish early embryos.
Parameters
----------
dirpath : string
Path to the directory containing the input image.
filename : string
Name of the input file, including file ending (should be .tif).
Returns
-------
clean_ws : 3D numpy array of same shape as input image
The single-cell segmentation. Every cell is labeled with a unique
integer ID. Background is 0.
results : dict
A number of measurements extracted from each cell. The dict keys
name the type of measurement. The dict values are lists containing
the measured values. The order of all lists is the same and relates
to the segmentation IDs through the list in results['cell_id'].
"""
## Importing & Handling Image Data
from os.path import join
filepath = join(dirpath, filename)
from skimage.io import imread
img = imread(filepath)
## Preprocessing
sigma = 3
img_smooth = ndi.gaussian_filter(img, sigma)
## Adaptive Thresholding
i = 31
SE = (np.mgrid[:i,:i][0] - np.floor(i/2))**2 + (np.mgrid[:i,:i][1] - np.floor(i/2))**2 <= np.floor(i/2)**2
from skimage.filters import rank
bg = rank.mean(img_smooth, footprint=SE)
mem = img_smooth > bg
## Improving Masks with Binary Morphology
mem_holefilled = ~ndi.binary_fill_holes(~mem) # Short form
i = 15
SE = (np.mgrid[:i,:i][0] - np.floor(i/2))**2 + (np.mgrid[:i,:i][1] - np.floor(i/2))**2 <= np.floor(i/2)**2
pad_size = i+1
mem_padded = np.pad(mem_holefilled, pad_size, mode='reflect')
mem_final = ndi.binary_closing(mem_padded, structure=SE)
mem_final = mem_final[pad_size:-pad_size, pad_size:-pad_size]
## Cell Segmentation by Seeding & Expansion
### Seeding by Distance Transform
dist_trans = ndi.distance_transform_edt(~mem_final)
dist_trans_smooth = ndi.gaussian_filter(dist_trans, sigma=5)
from skimage.feature import peak_local_max
seed_coords = peak_local_max(dist_trans_smooth, min_distance=10)
seeds = np.zeros_like(dist_trans_smooth, dtype=bool)
seeds[tuple(seed_coords.T)] = True
seeds_labeled = ndi.label(seeds)[0]
### Expansion by Watershed
from skimage.segmentation import watershed
ws = watershed(img_smooth, seeds_labeled)
## Postprocessing: Removing Cells at the Image Border
border_mask = np.zeros(ws.shape, dtype=bool)
border_mask = ndi.binary_dilation(border_mask, border_value=1)
clean_ws = np.copy(ws)
for cell_ID in np.unique(ws):
cell_mask = ws==cell_ID
cell_border_overlap = np.logical_and(cell_mask, border_mask)
total_overlap_pixels = np.sum(cell_border_overlap)
if total_overlap_pixels > 0:
clean_ws[cell_mask] = 0
for new_ID, cell_ID in enumerate(np.unique(clean_ws)[1:]):
clean_ws[clean_ws==cell_ID] = new_ID+1
## Identifying Cell Edges
edges = np.zeros_like(clean_ws)
for cell_ID in np.unique(clean_ws)[1:]:
cell_mask = clean_ws==cell_ID
eroded_cell_mask = ndi.binary_erosion(cell_mask, iterations=1)
edge_mask = np.logical_xor(cell_mask, eroded_cell_mask)
edges[edge_mask] = cell_ID
## Extracting Quantitative Measurements
results = {"cell_id" : [],
"int_mean" : [],
"int_mem_mean" : [],
"cell_area" : [],
"cell_edge" : []}
for cell_id in np.unique(clean_ws)[1:]:
cell_mask = clean_ws==cell_id
edge_mask = edges==cell_id
results["cell_id"].append(cell_id)
results["int_mean"].append(np.mean(img[cell_mask]))
results["int_mem_mean"].append(np.mean(img[edge_mask]))
results["cell_area"].append(np.sum(cell_mask))
results["cell_edge"].append(np.sum(edge_mask))
## Returning the results
return clean_ws, results